TransferTOD: A Generalizable Chinese Multi-Domain Task-Oriented Dialogue System with Transfer Capabilities
- URL: http://arxiv.org/abs/2407.21693v3
- Date: Sat, 12 Oct 2024 11:53:03 GMT
- Title: TransferTOD: A Generalizable Chinese Multi-Domain Task-Oriented Dialogue System with Transfer Capabilities
- Authors: Ming Zhang, Caishuang Huang, Yilong Wu, Shichun Liu, Huiyuan Zheng, Yurui Dong, Yujiong Shen, Shihan Dou, Jun Zhao, Junjie Ye, Qi Zhang, Tao Gui, Xuanjing Huang,
- Abstract summary: Task-oriented dialogue (TOD) systems aim to efficiently handle task-oriented conversations, including information collection.
How to utilize TOD accurately, efficiently and effectively for information collection has always been a critical and challenging task.
Recent studies have demonstrated that Large Language Models (LLMs) excel in dialogue, instruction generation, and reasoning.
- Score: 46.91749457402889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task-oriented dialogue (TOD) systems aim to efficiently handle task-oriented conversations, including information collection. How to utilize TOD accurately, efficiently and effectively for information collection has always been a critical and challenging task. Recent studies have demonstrated that Large Language Models (LLMs) excel in dialogue, instruction generation, and reasoning, and can significantly enhance the performance of TOD through fine-tuning. However, current datasets primarily cater to user-led systems and are limited to predefined specific scenarios and slots, thereby necessitating improvements in the proactiveness, diversity, and capabilities of TOD. In this study, we present a detailed multi-domain task-oriented data construction process for conversations, and a Chinese dialogue dataset generated based on this process, TransferTOD, which authentically simulates human-computer dialogues in 30 popular life service scenarios. Leveraging this dataset, we trained a model called TransferTOD-7B using full-parameter fine-tuning, showcasing notable abilities in slot filling and questioning. Our work has demonstrated its strong generalization capabilities in various downstream scenarios, significantly enhancing both data utilization efficiency and system performance. The data is released in https://github.com/KongLongGeFDU/TransferTOD.
Related papers
- DFlow: Diverse Dialogue Flow Simulation with Large Language Models [16.209331014315463]
This paper proposes a novel data augmentation method designed to enhance the diversity of synthetic dialogues.
We generate a task-oriented dialogue dataset comprising 3,886 dialogue flows across 15 different domains.
arXiv Detail & Related papers (2024-10-18T20:35:28Z) - Training Zero-Shot Generalizable End-to-End Task-Oriented Dialog System Without Turn-level Dialog Annotations [2.757798192967912]
This work employs multi-task instruction fine-tuning to create more efficient and scalable task-oriented dialogue systems.
Our approach outperforms both state-of-the-art models trained on annotated data and billion-scale parameter off-the-shelf ChatGPT models.
arXiv Detail & Related papers (2024-07-21T04:52:38Z) - Efficient Data Generation for Source-grounded Information-seeking Dialogs: A Use Case for Meeting Transcripts [10.829227084902428]
We investigate the feasibility and effectiveness of Large Language Models (LLMs)-based data generation in source-grounded information-seeking dialogs.
We create MISeD -- Meeting Information Seeking Dialogs dataset -- a dataset of information-seeking dialogs focused on meeting transcripts.
Finetuning on MISeD gives comparable response generation quality to finetuning on fully manual data, while improving attribution quality and reducing time and effort.
arXiv Detail & Related papers (2024-05-02T09:35:06Z) - Simulating Task-Oriented Dialogues with State Transition Graphs and Large Language Models [16.94819621353007]
SynTOD is a new synthetic data generation approach for developing end-to-end Task-Oriented Dialogue (TOD) systems.
It generates diverse, structured conversations through random walks and response simulation using large language models.
In our experiments, using graph-guided response simulations leads to significant improvements in intent classification, slot filling and response relevance.
arXiv Detail & Related papers (2024-04-23T06:23:34Z) - A Systematic Study of Performance Disparities in Multilingual
Task-Oriented Dialogue Systems [68.76102493999134]
We take stock of and empirically analyse task performance disparities that exist between multilingual task-oriented dialogue systems.
We prove the existence of the adaptation and intrinsic biases in current ToD systems.
Our analyses offer practical tips on how to approach ToD data collection and system development for new languages.
arXiv Detail & Related papers (2023-10-19T16:41:44Z) - InstructTODS: Large Language Models for End-to-End Task-Oriented
Dialogue Systems [60.53276524369498]
Large language models (LLMs) have been used for diverse tasks in natural language processing (NLP)
We present InstructTODS, a novel framework for zero-shot end-to-end task-oriented dialogue systems.
InstructTODS generates a proxy belief state that seamlessly translates user intentions into dynamic queries.
arXiv Detail & Related papers (2023-10-13T06:36:26Z) - Enhancing Performance on Seen and Unseen Dialogue Scenarios using
Retrieval-Augmented End-to-End Task-Oriented System [89.40590076430297]
This work enables the TOD systems with more flexibility through a simple cache.
We train end-to-end TOD models that can refer to and ground on both dialogue history and retrieved information during TOD generation.
Experiments demonstrate the superior performance of our framework, with a notable improvement in non-empty joint goal accuracy by 6.7% compared to strong baselines.
arXiv Detail & Related papers (2023-08-16T06:52:10Z) - Multi3WOZ: A Multilingual, Multi-Domain, Multi-Parallel Dataset for
Training and Evaluating Culturally Adapted Task-Oriented Dialog Systems [64.40789703661987]
Multi3WOZ is a novel multilingual, multi-domain, multi-parallel ToD dataset.
It is large-scale and offers culturally adapted dialogs in 4 languages.
We describe a complex bottom-up data collection process that yielded the final dataset.
arXiv Detail & Related papers (2023-07-26T08:29:42Z) - Leveraging Explicit Procedural Instructions for Data-Efficient Action
Prediction [5.448684866061922]
Task-oriented dialogues often require agents to enact complex, multi-step procedures in order to meet user requests.
Large language models have found success automating these dialogues in constrained environments, but their widespread deployment is limited by the substantial quantities of task-specific data required for training.
This paper presents a data-efficient solution to constructing dialogue systems, leveraging explicit instructions derived from agent guidelines.
arXiv Detail & Related papers (2023-06-06T18:42:08Z) - Cross-Lingual Dialogue Dataset Creation via Outline-Based Generation [70.81596088969378]
Cross-lingual Outline-based Dialogue dataset (termed COD) enables natural language understanding.
COD enables dialogue state tracking, and end-to-end dialogue modelling and evaluation in 4 diverse languages.
arXiv Detail & Related papers (2022-01-31T18:11:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.