Evaluating and Enhancing Out-of-Domain Generalization of Task-Oriented Dialog Systems for Task Completion without Turn-level Dialog Annotations
- URL: http://arxiv.org/abs/2502.13310v1
- Date: Tue, 18 Feb 2025 22:10:51 GMT
- Title: Evaluating and Enhancing Out-of-Domain Generalization of Task-Oriented Dialog Systems for Task Completion without Turn-level Dialog Annotations
- Authors: Adib Mosharrof, Moghis Fereidouni, A. B. Siddique,
- Abstract summary: This work explores whether large language models (LLMs) can be fine-tuned solely on natural language dialogs to perform ToD tasks, without requiring such annotations.
We find that models fine-tuned without turn-level annotations generate coherent and contextually appropriate responses.
We propose ZeroToD, a framework that incorporates a schema augmentation mechanism to enhance API call accuracy and overall task completion rates.
- Score: 2.453775887722866
- License:
- Abstract: Traditional task-oriented dialog (ToD) systems rely heavily on labor-intensive turn-level annotations, such as dialogue states and policy labels, for training. This work explores whether large language models (LLMs) can be fine-tuned solely on natural language dialogs to perform ToD tasks, without requiring such annotations. We evaluate their ability to generalize to unseen domains and compare their performance with models trained on fully annotated data. Through extensive experiments with three open-source LLMs of varying sizes and two diverse ToD datasets, we find that models fine-tuned without turn-level annotations generate coherent and contextually appropriate responses. However, their task completion performance - measured by accurate execution of API calls - remains suboptimal, with the best models achieving only around 53% success in unseen domains. To improve task completion, we propose ZeroToD, a framework that incorporates a schema augmentation mechanism to enhance API call accuracy and overall task completion rates, particularly in out-of-domain settings. We also compare ZeroToD with fine-tuning-free alternatives, such as prompting off-the-shelf LLMs, and find that our framework enables smaller, fine-tuned models that outperform large-scale proprietary LLMs in task completion. Additionally, a human study evaluating informativeness, fluency, and task completion confirms our empirical findings. These findings suggest the feasibility of developing cost-effective, scalable, and zero-shot generalizable ToD systems for real-world applications.
Related papers
- Improving Multi-turn Task Completion in Task-Oriented Dialog Systems via Prompt Chaining and Fine-Grained Feedback [2.246166820363412]
Task-oriented dialog (TOD) systems facilitate users in accomplishing complex, multi-turn tasks through natural language.
LLMs struggle to reliably handle multi-turn task completion.
We propose RealTOD, a novel framework that enhances TOD systems through prompt chaining and fine-grained feedback mechanisms.
arXiv Detail & Related papers (2025-02-18T21:36:19Z) - QLASS: Boosting Language Agent Inference via Q-Guided Stepwise Search [89.97082652805904]
We propose QLASS (Q-guided Language Agent Stepwise Search), to automatically generate annotations by estimating Q-values.
With the stepwise guidance, we propose a Q-guided generation strategy to enable language agents to better adapt to long-term value.
We empirically demonstrate that QLASS can lead to more effective decision making through qualitative analysis.
arXiv Detail & Related papers (2025-02-04T18:58:31Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
Large Language Models (LLMs) have the capability to understand and generate human-like text from input queries.
This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines.
We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding.
arXiv Detail & Related papers (2024-06-17T04:35:17Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
We propose an algorithmic framework that fine-tunes vision-language models (VLMs) with reinforcement learning (RL)
Our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning.
We demonstrate that our proposed framework enhances the decision-making capabilities of VLM agents across various tasks.
arXiv Detail & Related papers (2024-05-16T17:50:19Z) - Enabling Natural Zero-Shot Prompting on Encoder Models via Statement-Tuning [55.265138447400744]
Statement-Tuning is a technique that models discriminative tasks as a set of finite statements and trains an encoder model to discriminate between the potential statements to determine the label.
Experimental results demonstrate that Statement-Tuning achieves competitive performance compared to state-of-the-art LLMs with significantly fewer parameters.
The study investigates the impact of several design choices on few-shot and zero-shot generalization, revealing that Statement-Tuning can achieve strong performance with modest training data.
arXiv Detail & Related papers (2024-04-19T14:05:03Z) - Zero-Shot Generalizable End-to-End Task-Oriented Dialog System using
Context Summarization and Domain Schema [2.7178968279054936]
State-of-the-art approaches in task-oriented dialog systems formulate the problem as a conditional sequence generation task.
This requires labeled training data for each new domain or task.
We introduce a novel Zero-Shot generalizable end-to-end Task-oriented Dialog system, ZS-ToD.
arXiv Detail & Related papers (2023-03-28T18:56:31Z) - On the Use of External Data for Spoken Named Entity Recognition [40.93448412171246]
Recent advances in self-supervised speech representations have made it feasible to consider learning models with limited labeled data.
We draw on a variety of approaches, including self-training, knowledge distillation, and transfer learning, and consider their applicability to both end-to-end models and pipeline approaches.
arXiv Detail & Related papers (2021-12-14T18:49:26Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
This paper proposes Comprehensive Instruction (CINS) that exploits PLMs with task-specific instructions.
We design a schema (definition, constraint, prompt) of instructions and their customized realizations for three important downstream tasks in ToD.
Experiments are conducted on these ToD tasks in realistic few-shot learning scenarios with small validation data.
arXiv Detail & Related papers (2021-09-10T03:23:06Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
We introduce the RADDLE benchmark, a collection of corpora and tools for evaluating the performance of models across a diverse set of domains.
RADDLE is designed to favor and encourage models with a strong generalization ability.
We evaluate recent state-of-the-art systems based on pre-training and fine-tuning, and find that grounded pre-training on heterogeneous dialog corpora performs better than training a separate model per domain.
arXiv Detail & Related papers (2020-12-29T08:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.