RainMamba: Enhanced Locality Learning with State Space Models for Video Deraining
- URL: http://arxiv.org/abs/2407.21773v2
- Date: Wed, 11 Sep 2024 17:47:33 GMT
- Title: RainMamba: Enhanced Locality Learning with State Space Models for Video Deraining
- Authors: Hongtao Wu, Yijun Yang, Huihui Xu, Weiming Wang, Jinni Zhou, Lei Zhu,
- Abstract summary: We present an improved SSMs-based video deraining network (RainMamba) with a novel Hilbert mechanism to better capture sequence-level local information.
We also introduce a difference-guided dynamic contrastive locality learning strategy to enhance the patch-level self-similarity learning ability of the proposed network.
- Score: 14.025870185802463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The outdoor vision systems are frequently contaminated by rain streaks and raindrops, which significantly degenerate the performance of visual tasks and multimedia applications. The nature of videos exhibits redundant temporal cues for rain removal with higher stability. Traditional video deraining methods heavily rely on optical flow estimation and kernel-based manners, which have a limited receptive field. Yet, transformer architectures, while enabling long-term dependencies, bring about a significant increase in computational complexity. Recently, the linear-complexity operator of the state space models (SSMs) has contrarily facilitated efficient long-term temporal modeling, which is crucial for rain streaks and raindrops removal in videos. Unexpectedly, its uni-dimensional sequential process on videos destroys the local correlations across the spatio-temporal dimension by distancing adjacent pixels. To address this, we present an improved SSMs-based video deraining network (RainMamba) with a novel Hilbert scanning mechanism to better capture sequence-level local information. We also introduce a difference-guided dynamic contrastive locality learning strategy to enhance the patch-level self-similarity learning ability of the proposed network. Extensive experiments on four synthesized video deraining datasets and real-world rainy videos demonstrate the effectiveness and efficiency of our network in the removal of rain streaks and raindrops. Our code and results are available at https://github.com/TonyHongtaoWu/RainMamba.
Related papers
- Image Deraining with Frequency-Enhanced State Space Model [2.9465623430708905]
This study introduces SSM to image deraining with deraining-specific enhancements and proposes a Deraining Frequency-Enhanced State Space Model (DFSSM)
We develop a novel mixed-scale gated-convolutional block, which uses convolutions with multiple kernel sizes to capture various scale degradations effectively.
Experiments on synthetic and real-world rainy image datasets show that our method surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-05-26T07:45:12Z) - RainyScape: Unsupervised Rainy Scene Reconstruction using Decoupled Neural Rendering [50.14860376758962]
We propose RainyScape, an unsupervised framework for reconstructing clean scenes from a collection of multi-view rainy images.
Based on the spectral bias property of neural networks, we first optimize the neural rendering pipeline to obtain a low-frequency scene representation.
We jointly optimize the two modules, driven by the proposed adaptive direction-sensitive gradient-based reconstruction loss.
arXiv Detail & Related papers (2024-04-17T14:07:22Z) - EGVD: Event-Guided Video Deraining [57.59935209162314]
We propose an end-to-end learning-based network to unlock the potential of the event camera for video deraining.
We build a real-world dataset consisting of rainy videos and temporally synchronized event streams.
arXiv Detail & Related papers (2023-09-29T13:47:53Z) - Towards General and Fast Video Derain via Knowledge Distillation [10.614356931086267]
We propose a Rain Review-based General video derain Network via knowledge distillation (named RRGNet)
We design a frame grouping-based encoder-decoder network that makes full use of the temporal information of the video.
To consolidate the network's ability to derain, we design a rain review module to play back data from old tasks for the current model.
arXiv Detail & Related papers (2023-08-10T05:27:43Z) - Dual Degradation Representation for Joint Deraining and Low-Light Enhancement in the Dark [57.85378202032541]
Rain in the dark poses a significant challenge to deploying real-world applications such as autonomous driving, surveillance systems, and night photography.
Existing low-light enhancement or deraining methods struggle to brighten low-light conditions and remove rain simultaneously.
We introduce an end-to-end model called L$2$RIRNet, designed to manage both low-light enhancement and deraining in real-world settings.
arXiv Detail & Related papers (2023-05-06T10:17:42Z) - RCDNet: An Interpretable Rain Convolutional Dictionary Network for
Single Image Deraining [49.99207211126791]
We specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet)
RCDNet embeds the intrinsic priors of rain streaks and has clear interpretability.
By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted.
arXiv Detail & Related papers (2021-07-14T16:08:11Z) - Enhanced Spatio-Temporal Interaction Learning for Video Deraining: A
Faster and Better Framework [93.37833982180538]
Video deraining is an important task in computer vision as the unwanted rain hampers the visibility of videos and deteriorates the robustness of most outdoor vision systems.
We present a new end-to-end deraining framework, named Enhanced Spatio-Temporal Interaction Network (ESTINet)
ESTINet considerably boosts current state-of-the-art video deraining quality and speed.
arXiv Detail & Related papers (2021-03-23T05:19:35Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
This paper proposes a new semi-supervised video deraining method, in which a dynamic rain generator is employed to fit the rain layer.
Specifically, such dynamic generator consists of one emission model and one transition model to simultaneously encode the spatially physical structure and temporally continuous changes of rain streaks.
Various prior formats are designed for the labeled synthetic and unlabeled real data, so as to fully exploit the common knowledge underlying them.
arXiv Detail & Related papers (2021-03-14T14:28:57Z) - Rain Streak Removal in a Video to Improve Visibility by TAWL Algorithm [12.056495277232118]
We propose a novel method by combining three novel extracted features focusing on temporal appearance, wide shape and relative location of the rain streak.
The proposed TAWL method adaptively uses features from different resolutions and frame rates to remove rain in the real-time.
The experiments have been conducted using video sequences with both real rains and synthetic rains to compare the performance of the proposed method against the relevant state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T05:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.