Evaluating Transfer Learning in Deep Learning Models for Classification on a Custom Wildlife Dataset: Can YOLOv8 Surpass Other Architectures?
- URL: http://arxiv.org/abs/2408.00002v1
- Date: Wed, 10 Jul 2024 15:03:00 GMT
- Title: Evaluating Transfer Learning in Deep Learning Models for Classification on a Custom Wildlife Dataset: Can YOLOv8 Surpass Other Architectures?
- Authors: Subek Sharma, Sisir Dhakal, Mansi Bhavsar,
- Abstract summary: Current human-led monitoring techniques are prone to errors and are labor-intensive.
We study the application of deep learning methods like Convolutional Neural Networks (CNNs) and transfer learning.
Our results indicate that YOLOv8 performs better, achieving a training accuracy of 97.39 % and an F1 score of 96.50 %.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biodiversity plays a crucial role in maintaining the balance of the ecosystem. However, poaching and unintentional human activities contribute to the decline in the population of many species. Hence, active monitoring is required to preserve these endangered species. Current human-led monitoring techniques are prone to errors and are labor-intensive. Therefore, we study the application of deep learning methods like Convolutional Neural Networks (CNNs) and transfer learning, which can aid in automating the process of monitoring endangered species. For this, we create our custom dataset utilizing trustworthy online databases like iNaturalist and ZooChat. To choose the best model for our use case, we compare the performance of different architectures like DenseNet, ResNet, VGGNet, and YOLOv8 on the custom wildlife dataset. Transfer learning reduces training time by freezing the pre-trained weights and replacing only the output layer with custom, fully connected layers designed for our dataset. Our results indicate that YOLOv8 performs better, achieving a training accuracy of 97.39 % and an F1 score of 96.50 %, surpassing other models. Our findings suggest that integrating YOLOv8 into conservation efforts could revolutionize wildlife monitoring with its high accuracy and efficiency, potentially transforming how endangered species are monitored and protected worldwide.
Related papers
- Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
This paper studies the efficient transferability assessment of pre-trained object detectors.
We build up a detector transferability benchmark which contains a large and diverse zoo of pre-trained detectors.
Experimental results demonstrate that our method outperforms other state-of-the-art approaches in assessing transferability.
arXiv Detail & Related papers (2024-03-14T14:23:23Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - On the Connection between Pre-training Data Diversity and Fine-tuning
Robustness [66.30369048726145]
We find that the primary factor influencing downstream effective robustness is data quantity.
We demonstrate our findings on pre-training distributions drawn from various natural and synthetic data sources.
arXiv Detail & Related papers (2023-07-24T05:36:19Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
We show that ensembles of Data-efficient image Transformers (DeiTs) significantly outperform the previous state of the art (SOTA)
On all the data sets we test, we achieve a new SOTA, with a reduction of the error with respect to the previous SOTA ranging from 18.48% to 87.50%.
arXiv Detail & Related papers (2022-03-03T14:16:22Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
We propose a simple yet effective online learning approach for few-shot online adaptation without requiring offline training.
It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen before.
We evaluate our approach based on two networks in the online learning families for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP.
arXiv Detail & Related papers (2021-12-28T06:51:18Z) - Classification of animal sounds in a hyperdiverse rainforest using
Convolutional Neural Networks [0.0]
Automated species detection from passively recorded soundscapes via machine-learning approaches is a promising technique.
We use soundscapes from a tropical forest in Borneo and a Convolutional Neural Network model (CNN) created with transfer learning.
Our results suggest that transfer learning and data augmentation can make the use of CNNs to classify species' vocalizations feasible even for small soundscape-based projects with many rare species.
arXiv Detail & Related papers (2021-11-29T21:34:57Z) - A Comprehensive Study on Torchvision Pre-trained Models for Fine-grained
Inter-species Classification [12.917749344429524]
This study aims to explore different pre-trained models offered in the Torchvision package which is available in the PyTorch library.
We investigate Torchvision pre-trained models on four different data sets: 10 Monkey Species, 225 Bird Species, Fruits 360, and Oxford 102 Flowers.
We also apply their usual fully-connected layer and the Spinal fully-connected layer to investigate the effectiveness of SpinalNet.
arXiv Detail & Related papers (2021-10-14T00:36:02Z) - Zoo-Tuning: Adaptive Transfer from a Zoo of Models [82.9120546160422]
Zoo-Tuning learns to adaptively transfer the parameters of pretrained models to the target task.
We evaluate our approach on a variety of tasks, including reinforcement learning, image classification, and facial landmark detection.
arXiv Detail & Related papers (2021-06-29T14:09:45Z) - Deep learning with self-supervision and uncertainty regularization to
count fish in underwater images [28.261323753321328]
Effective conservation actions require effective population monitoring.
Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive.
Counting animals from such data is challenging, particularly when densely packed in noisy images.
Deep learning is the state-of-the-art method for many computer vision tasks, but it has yet to be properly explored to count animals.
arXiv Detail & Related papers (2021-04-30T13:02:19Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
We show how to adapt vision-based robotic manipulation policies to new variations by fine-tuning via off-policy reinforcement learning.
This adaptation uses less than 0.2% of the data necessary to learn the task from scratch.
We find that our approach of adapting pre-trained policies leads to substantial performance gains over the course of fine-tuning.
arXiv Detail & Related papers (2020-04-21T17:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.