Transfer Learning for Wildlife Classification: Evaluating YOLOv8 against DenseNet, ResNet, and VGGNet on a Custom Dataset
- URL: http://arxiv.org/abs/2408.00002v2
- Date: Tue, 12 Nov 2024 14:55:50 GMT
- Title: Transfer Learning for Wildlife Classification: Evaluating YOLOv8 against DenseNet, ResNet, and VGGNet on a Custom Dataset
- Authors: Subek Sharma, Sisir Dhakal, Mansi Bhavsar,
- Abstract summary: The study utilizes transfer learning to fine-tune pre-trained models on the dataset.
YOLOv8 outperforms other models, achieving a training accuracy of 97.39% and a validation F1-score of 96.50%.
- Score: 0.0
- License:
- Abstract: This study evaluates the performance of various deep learning models, specifically DenseNet, ResNet, VGGNet, and YOLOv8, for wildlife species classification on a custom dataset. The dataset comprises 575 images of 23 endangered species sourced from reputable online repositories. The study utilizes transfer learning to fine-tune pre-trained models on the dataset, focusing on reducing training time and enhancing classification accuracy. The results demonstrate that YOLOv8 outperforms other models, achieving a training accuracy of 97.39% and a validation F1-score of 96.50%. These findings suggest that YOLOv8, with its advanced architecture and efficient feature extraction capabilities, holds great promise for automating wildlife monitoring and conservation efforts.
Related papers
- Self-Supervised Learning in Deep Networks: A Pathway to Robust Few-Shot Classification [0.0]
We first pre-train the model with self-supervision to enable it to learn common feature expressions on a large amount of unlabeled data.
Then fine-tune it on the few-shot dataset Mini-ImageNet to improve the model's accuracy and generalization ability under limited data.
arXiv Detail & Related papers (2024-11-19T01:01:56Z) - Optimizing YOLO Architectures for Optimal Road Damage Detection and Classification: A Comparative Study from YOLOv7 to YOLOv10 [0.0]
This paper presents a comprehensive workflow for road damage detection using deep learning models.
To accommodate hardware limitations, large images are cropped, and lightweight models are utilized.
The proposed approach employs multiple model architectures, including a custom YOLOv7 model with Coordinate Attention layers and a Tiny YOLOv7 model.
arXiv Detail & Related papers (2024-10-10T22:55:12Z) - Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
This paper studies the efficient transferability assessment of pre-trained object detectors.
We build up a detector transferability benchmark which contains a large and diverse zoo of pre-trained detectors.
Experimental results demonstrate that our method outperforms other state-of-the-art approaches in assessing transferability.
arXiv Detail & Related papers (2024-03-14T14:23:23Z) - MelNet: A Real-Time Deep Learning Algorithm for Object Detection [0.0]
MelNet is a novel deep learning algorithm for object detection.
Training exclusively on the KITTI dataset also surpasses EfficientDet after 150 epochs.
arXiv Detail & Related papers (2024-01-31T16:27:47Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - DeepSeaNet: Improving Underwater Object Detection using EfficientDet [0.0]
This project involves implementing and evaluating various object detection models on an annotated underwater dataset.
The dataset comprises annotated image sequences of fish, crabs, starfish, and other aquatic animals captured in Limfjorden water with limited visibility.
I compare the results of YOLOv3 (31.10% mean Average Precision (mAP)), YOLOv4 (83.72% mAP), YOLOv5 (97.6%), YOLOv8 (98.20%), EfficientDet (98.56% mAP) and Detectron2 (95.20% mAP) on the same dataset.
arXiv Detail & Related papers (2023-05-26T13:41:35Z) - Effective Robustness against Natural Distribution Shifts for Models with
Different Training Data [113.21868839569]
"Effective robustness" measures the extra out-of-distribution robustness beyond what can be predicted from the in-distribution (ID) performance.
We propose a new evaluation metric to evaluate and compare the effective robustness of models trained on different data.
arXiv Detail & Related papers (2023-02-02T19:28:41Z) - Implementing a Real-Time, YOLOv5 based Social Distancing Measuring
System for Covid-19 [0.0]
We have developed a custom defined model YOLOv5 modified CSP (Cross Stage Partial Network)
We have assessed the performance on COCO and Visdrone dataset with and without transfer learning.
Our findings show that the developed model successfully identifies the individual who violates the social distances.
arXiv Detail & Related papers (2022-04-07T10:42:30Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
Transformer-based supervised pre-training achieves great performance in person re-identification (ReID)
Due to the domain gap between ImageNet and ReID datasets, it usually needs a larger pre-training dataset to boost the performance.
This work aims to mitigate the gap between the pre-training and ReID datasets from the perspective of data and model structure.
arXiv Detail & Related papers (2021-11-23T18:59:08Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations.
We propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions.
We prove that even a much smaller dataset with well-matched annotations can facilitate models to achieve better performance as well as generalizability.
arXiv Detail & Related papers (2021-09-04T02:45:22Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.