論文の概要: Handling Numeric Expressions in Automatic Speech Recognition
- arxiv url: http://arxiv.org/abs/2408.00004v1
- Date: Thu, 18 Jul 2024 09:46:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 05:35:40.087699
- Title: Handling Numeric Expressions in Automatic Speech Recognition
- Title(参考訳): 音声認識における数値表現の扱い
- Authors: Christian Huber, Alexander Waibel,
- Abstract要約: 数値表現の認識と形式化のためのケースドとエンド・ツー・エンドのアプローチを比較した。
その結果,適応型エンドツーエンドモデルでは,低レイテンシと推論コストの利点を生かして,競争性能が向上することがわかった。
- 参考スコア(独自算出の注目度): 56.972851337263755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of correctly formatting numeric expressions in automatic speech recognition (ASR) transcripts. This is challenging since the expected transcript format depends on the context, e.g., 1945 (year) vs. 19:45 (timestamp). We compare cascaded and end-to-end approaches to recognize and format numeric expression, such as years, timestamps, currency amounts, and quantities. For the end-to-end approach we employed a data generation strategy using a large language model (LLM) together with a text to speech (TTS) model to generate adaptation data. The results on our test dataset show that while approaches based on LLMs perform well on recognizing formatted numeric expressions, adapted end-to-end models offer competitive performance with the advantage of lower latency and inference cost.
- Abstract(参考訳): 本稿では,自動音声認識(ASR)文字起こしにおいて,数値表現を正しくフォーマットする問題に対処する。
例えば、1945年(年)対19:45年(タイムスタンプ)である。
我々は、年、タイムスタンプ、通貨量、量などの数値表現を認識し、フォーマットするためのカスケードとエンドツーエンドのアプローチを比較した。
エンドツーエンドのアプローチでは,大言語モデル(LLM)とテキスト音声モデル(TTS)を用いて適応データを生成する。
テストデータセットの結果から,LLMに基づくアプローチは形式付き数値表現の認識において良好に機能するのに対し,適応型エンドツーエンドモデルは低レイテンシと推論コストの利点を生かして競合性能を提供することがわかった。
関連論文リスト
- Retrieval is Accurate Generation [99.24267226311157]
本稿では,支援文書の集合からコンテキスト認識句を選択する新しい手法を提案する。
本モデルでは,検索対象のベースラインの中で,最高の性能と低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-02-27T14:16:19Z) - Efficient data selection employing Semantic Similarity-based Graph
Structures for model training [1.5845679507219355]
本稿では,SeSaME(Semantics for Data SAliency in Model Performance Estimation)を紹介する。
これはテキスト情報のみに基づく効率的なデータサンプリング機構であり、計算量の多いモデルにデータを渡すことなく利用できる。
このアプローチの適用例は、低リソース自動音声認識(ASR)モデルの使用例で示される。
論文 参考訳(メタデータ) (2024-02-22T09:43:53Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - Code-Switching Text Generation and Injection in Mandarin-English ASR [57.57570417273262]
業界で広く使われているストリーミングモデルTransformer-Transducer(T-T)の性能向上のためのテキスト生成とインジェクションについて検討する。
まず、コードスイッチングテキストデータを生成し、テキスト-to-Speech(TTS)変換または暗黙的に音声とテキストの潜在空間を結び付けることによって、T-Tモデルに生成されたテキストを明示的に注入する戦略を提案する。
実際のマンダリン・イングリッシュ音声の1,800時間を含むデータセットを用いて訓練したT-Tモデルの実験結果から,生成したコードスイッチングテキストを注入する手法により,T-Tモデルの性能が著しく向上することが示された。
論文 参考訳(メタデータ) (2023-03-20T09:13:27Z) - A Simple Baseline for Domain Adaptation in End to End ASR Systems Using
Synthetic Data [1.14219428942199]
エンドツーエンド音声認識モデルにおけるドメイン適応のための簡単なベースライン手法を提案する。
テキストのみのコーパスを単一話者テキスト音声(TTS)エンジンを用いて音声データに変換する。
単一話者合成TTSデータと最終密度層を結合した微調整が単語誤り率の合理的な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2022-06-22T12:07:38Z) - Guided-TTS:Text-to-Speech with Untranscribed Speech [22.548875263927396]
我々は、未転写音声データから音声を生成することを学習する高品質TTSモデルである Guided-TTS を提案する。
音声合成において,無条件DDPMの生成過程を音素分類を用いて導き,メル-スペクトログラムを生成する。
論文 参考訳(メタデータ) (2021-11-23T10:05:05Z) - Improving Punctuation Restoration for Speech Transcripts via External
Data [1.4335946386597276]
ノイズのあるテキストに特化して句読解問題に取り組む。
我々は、n-gram言語モデルに基づくデータサンプリング手法を導入し、より多くのトレーニングデータをサンプリングする。
提案手法は1:12%のF1スコアでベースラインを上回っている。
論文 参考訳(メタデータ) (2021-10-01T17:40:55Z) - Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration [62.75234183218897]
話者の訓練データなしで自然かつ一貫性のあるターゲット音声を生成する一段階の文脈認識フレームワークを提案する。
変換器をベースとしたデコーダを用いて,編集音声のメルスペクトルを生成する。
これは最近のゼロショット TTS エンジンを大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-09-12T04:17:53Z) - On Addressing Practical Challenges for RNN-Transduce [72.72132048437751]
オーディオデータを収集することなく、よく訓練されたRNN-Tモデルを新しいドメインに適応します。
復号時に計算された複数の特徴を利用して単語レベルの信頼度を求める。
提案手法では,平均で50ms以下の単語のタイミング差が得られる。
論文 参考訳(メタデータ) (2021-04-27T23:31:43Z) - On-the-Fly Aligned Data Augmentation for Sequence-to-Sequence ASR [10.261890123213622]
自動音声認識(ASR)のためのオンザフライデータ拡張手法を提案する。
ASRのAligned Data Augmentation(ADA)と呼ばれる私たちのメソッドは、トランスクリプトされたトークンと音声表現を整列した方法で置き換えて、トレーニングペアを生成します。
論文 参考訳(メタデータ) (2021-04-03T13:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。