論文の概要: WebApp1K: A Practical Code-Generation Benchmark for Web App Development
- arxiv url: http://arxiv.org/abs/2408.00019v1
- Date: Tue, 30 Jul 2024 18:49:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 00:36:46.236801
- Title: WebApp1K: A Practical Code-Generation Benchmark for Web App Development
- Title(参考訳): WebApp1K:Webアプリ開発のための実用的なコード生成ベンチマーク
- Authors: Yi Cui,
- Abstract要約: WebApp1Kは、LLMのWebアプリ開発能力を測定するためのコード生成ベンチマークである。
我々は、WebApp1Kの初期バージョンを示し、最新のフロンティアLSMに対してベンチマークを実行した結果を共有します。
- 参考スコア(独自算出の注目度): 1.7268889851975326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce WebApp1K, a practical code-generation benchmark to measure LLM ability to develop web apps. This benchmark aims to calibrate LLM output and aid the models to progressively improve code correctness and functionality. The benchmark is lightweight and easy to run. We present the initial version of WebApp1K, and share our findings of running the benchmark against the latest frontier LLMs. First, open source LLMs deliver impressive performance, closely trailing behind GPT-4o and Claude 3.5. Second, model size has strong correlation with code correctness. Third, no prompting techniques have been found to lift performance either universally to all models, or significantly to a single model.
- Abstract(参考訳): 我々は,LLMによるWebアプリ開発能力を測定するための,実用的なコード生成ベンチマークであるWebApp1Kを紹介する。
このベンチマークは、LCM出力の校正と、モデルのコードの正しさと機能の漸進的な改善を支援することを目的としている。
ベンチマークは軽量で、実行も簡単です。
我々は、WebApp1Kの初期バージョンを示し、最新のフロンティアLSMに対してベンチマークを実行した結果を共有します。
まず、オープンソースのLLMは、GPT-4oとClaude 3.5に追随して、素晴らしいパフォーマンスを提供する。
第二に、モデルのサイズはコードの正確性と強い相関関係がある。
第3に、すべてのモデルで、または単一のモデルで、パフォーマンスを上げるプロンプト技術は見出されていない。
関連論文リスト
- PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback [78.89596149768458]
大規模言語モデル(LLM)は、ソフトウェア開発タスクを支援するために広く採用されている。
LLM生成コードの性能を向上させるトレーニングフリーフレームワークPerfCodeGenを提案する。
論文 参考訳(メタデータ) (2024-11-18T06:22:38Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Large Language Models as Code Executors: An Exploratory Study [29.545321608864295]
本稿では,Large Language Models (LLM) をコードエグゼキュータとして探索する。
OpenAIのo1、GPT-4o、GPT-3.5、DeepSeek、Qwen-Coderなど、さまざまなLLMでこの実現可能性を調べています。
我々は,コードスニペットを行単位で処理し,弱いモデルの精度を平均7.22%向上させるIIP(Iterative Instruction Prompting)技術を導入する。
論文 参考訳(メタデータ) (2024-10-09T08:23:22Z) - Applying RLAIF for Code Generation with API-usage in Lightweight LLMs [15.366324461797582]
Reinforcement Learning from AI Feedback (RLAIF)は、さまざまな領域で大きな可能性を証明している。
本稿では,軽量 (1B パラメータ) LLM のコード生成能力を改善するための RLAIF フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-28T17:16:03Z) - Performance-Aligned LLMs for Generating Fast Code [2.180216161965907]
コードLLMの出力と性能を一致させる強化学習に基づく手法を提案する。
我々は,一連のベンチマークタスクのベースモデル上でのコード生成の高速化を,微調整モデルにより改善できることを実証した。
論文 参考訳(メタデータ) (2024-04-29T16:52:38Z) - MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents [62.02920842630234]
GPT-4レベルの性能を持つが400倍の低コストでファクトチェックモデルを構築する方法を示す。
GPT-4を用いて合成トレーニングデータを構築することで,現実的かつ困難な事実エラーの事例を生成する。
評価のために, ファクトチェックとグラウンドグラウンド化に関する最近の研究から得られたデータセットを, 新たなベンチマーク LLM-AggreFact に統一する。
論文 参考訳(メタデータ) (2024-04-16T17:59:10Z) - Design2Code: Benchmarking Multimodal Code Generation for Automated Front-End Engineering [74.99736967448423]
私たちは、このタスクのための最初の実世界のベンチマークであるDesign2Codeを構築します。
テストケースとして484の多様な実世界のWebページを手作業でキュレートし、自動評価指標のセットを開発する。
我々の詳細なブレークダウンメトリクスは、入力されたWebページから視覚要素をリコールし、正しいレイアウト設計を生成するモデルがほとんど遅れていることを示している。
論文 参考訳(メタデータ) (2024-03-05T17:56:27Z) - Fine-Tuning and Prompt Engineering for Large Language Models-based Code Review Automation [4.941630596191807]
コードレビュー自動化にLLM(Large Language Models)を利用する場合、ファインチューニングとプロンプトが一般的なアプローチである。
LLMベースのコードレビュー自動化では、モデルファインチューニングと推論技術(ゼロショット学習、少数ショット学習、ペルソナ)を使用します。
その結果、ゼロショット学習によるGPT-3.5は、Guoらのアプローチよりも73.17%-74.23%高いEMが得られることがわかった。
論文 参考訳(メタデータ) (2024-02-01T03:10:26Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。