Need of AI in Modern Education: in the Eyes of Explainable AI (xAI)
- URL: http://arxiv.org/abs/2408.00025v2
- Date: Tue, 15 Oct 2024 17:15:31 GMT
- Title: Need of AI in Modern Education: in the Eyes of Explainable AI (xAI)
- Authors: Supriya Manna, Niladri Sett,
- Abstract summary: This chapter tries to shed light on the complex ways AI operates, especially concerning biases.
These are the foundational steps towards better educational policies, which include using AI in ways that are more reliable, accountable, and beneficial for everyone involved.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern Education is not \textit{Modern} without AI. However, AI's complex nature makes understanding and fixing problems challenging. Research worldwide shows that a parent's income greatly influences a child's education. This led us to explore how AI, especially complex models, makes important decisions using Explainable AI tools. Our research uncovered many complexities linked to parental income and offered reasonable explanations for these decisions. However, we also found biases in AI that go against what we want from AI in education: clear transparency and equal access for everyone. These biases can impact families and children's schooling, highlighting the need for better AI solutions that offer fair opportunities to all. This chapter tries to shed light on the complex ways AI operates, especially concerning biases. These are the foundational steps towards better educational policies, which include using AI in ways that are more reliable, accountable, and beneficial for everyone involved.
Related papers
- Making AI Intelligible: Philosophical Foundations [0.0]
'Making AI Intelligible' shows that philosophical work on the metaphysics of meaning can help answer these questions.
Author: The questions addressed in the book are not only theoretically interesting, but the answers have pressing practical implications.
arXiv Detail & Related papers (2024-06-12T12:25:04Z) - Bootstrapping Developmental AIs: From Simple Competences to Intelligent
Human-Compatible AIs [0.0]
The mainstream AIs approaches are the generative and deep learning approaches with large language models (LLMs) and the manually constructed symbolic approach.
This position paper lays out the prospects, gaps, and challenges for extending the practice of developmental AIs to create resilient, intelligent, and human-compatible AIs.
arXiv Detail & Related papers (2023-08-08T21:14:21Z) - Un jeu a debattre pour sensibiliser a l'Intelligence Artificielle dans
le contexte de la pandemie de COVID-19 [0.0]
We propose a serious game in the form of a civic debate aiming at selecting an AI solution to control a pandemic.
This game is targeted at high school students, it was first experimented during a science fair, and is now available freely.
arXiv Detail & Related papers (2023-04-19T09:06:10Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Unpacking the "Black Box" of AI in Education [0.0]
We seek to clarify what "AI" is and the potential it holds to both advance and hamper educational opportunities that may improve the human condition.
We offer a basic introduction to different methods and philosophies underpinning AI, discuss recent advances, explore applications to education, and highlight key limitations and risks.
Our hope is to make often jargon-laden terms and concepts accessible, so that all are equipped to understand, interrogate, and ultimately shape the development of human centered AI in education.
arXiv Detail & Related papers (2022-12-31T18:27:21Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Challenges of Artificial Intelligence -- From Machine Learning and
Computer Vision to Emotional Intelligence [0.0]
We believe that AI is a helper, not a ruler of humans.
Computer vision has been central to the development of AI.
Emotions are central to human intelligence, but little use has been made in AI.
arXiv Detail & Related papers (2022-01-05T06:00:22Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.