Multiple Greedy Quasi-Newton Methods for Saddle Point Problems
- URL: http://arxiv.org/abs/2408.00241v1
- Date: Thu, 1 Aug 2024 02:40:37 GMT
- Title: Multiple Greedy Quasi-Newton Methods for Saddle Point Problems
- Authors: Minheng Xiao, Shi Bo, Zhizhong Wu,
- Abstract summary: We introduce the Multiple Greedysi-SP (MGSR1-SP) method to solve Hessian point problems.
We show that our method significantly improves both stability and efficiency.
Results affirm MGSR1-SP performance across a broad spectrum of machine learning applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces the Multiple Greedy Quasi-Newton (MGSR1-SP) method, a novel approach to solving strongly-convex-strongly-concave (SCSC) saddle point problems. Our method enhances the approximation of the squared indefinite Hessian matrix inherent in these problems, significantly improving both stability and efficiency through iterative greedy updates. We provide a thorough theoretical analysis of MGSR1-SP, demonstrating its linear-quadratic convergence rate. Numerical experiments conducted on AUC maximization and adversarial debiasing problems, compared with state-of-the-art algorithms, underscore our method's enhanced convergence rate. These results affirm the potential of MGSR1-SP to improve performance across a broad spectrum of machine learning applications where efficient and accurate Hessian approximations are crucial.
Related papers
- Quantum Maximum Entropy Inference and Hamiltonian Learning [4.9614587340495]
This work extends algorithms for maximum entropy inference and learning of graphical models to the quantum realm.
The generalization, known as quantum iterative scaling (QIS), is straightforward, but the key challenge lies in the non-commutative nature of quantum problem instances.
We explore quasi-Newton methods to enhance the performance of QIS and GD.
arXiv Detail & Related papers (2024-07-16T08:11:34Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Incremental Quasi-Newton Methods with Faster Superlinear Convergence
Rates [50.36933471975506]
We consider the finite-sum optimization problem, where each component function is strongly convex and has Lipschitz continuous gradient and Hessian.
The recently proposed incremental quasi-Newton method is based on BFGS update and achieves a local superlinear convergence rate.
This paper proposes a more efficient quasi-Newton method by incorporating the symmetric rank-1 update into the incremental framework.
arXiv Detail & Related papers (2024-02-04T05:54:51Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - COCO Denoiser: Using Co-Coercivity for Variance Reduction in Stochastic
Convex Optimization [4.970364068620608]
We exploit convexity and L-smoothness to improve the noisy estimates outputted by the gradient oracle.
We show that increasing the number and proximity of the queried points leads to better gradient estimates.
We also apply COCO in vanilla settings by plugging it in existing algorithms, such as SGD, Adam or STRSAGA.
arXiv Detail & Related papers (2021-09-07T17:21:09Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Saddle Point Optimization with Approximate Minimization Oracle and its
Application to Robust Berthing Control [7.347989843033034]
We propose an approach to saddle point optimization relying only on oracles that solve minimization problems approximately.
We analyze its convergence property on a strongly convex--concave problem and show its linear convergence toward the global min-max saddle point.
An implementation of the developed approach using the (1+1)-CMA-ES as the minimization oracle, namely Adversarial-CMA-ES, is shown to outperform several existing approaches on test problems.
arXiv Detail & Related papers (2021-05-25T00:08:47Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.