Quantum Maximum Entropy Inference and Hamiltonian Learning
- URL: http://arxiv.org/abs/2407.11473v1
- Date: Tue, 16 Jul 2024 08:11:34 GMT
- Title: Quantum Maximum Entropy Inference and Hamiltonian Learning
- Authors: Minbo Gao, Zhengfeng Ji, Fuchao Wei,
- Abstract summary: This work extends algorithms for maximum entropy inference and learning of graphical models to the quantum realm.
The generalization, known as quantum iterative scaling (QIS), is straightforward, but the key challenge lies in the non-commutative nature of quantum problem instances.
We explore quasi-Newton methods to enhance the performance of QIS and GD.
- Score: 4.9614587340495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maximum entropy inference and learning of graphical models are pivotal tasks in learning theory and optimization. This work extends algorithms for these problems, including generalized iterative scaling (GIS) and gradient descent (GD), to the quantum realm. While the generalization, known as quantum iterative scaling (QIS), is straightforward, the key challenge lies in the non-commutative nature of quantum problem instances, rendering the convergence rate analysis significantly more challenging than the classical case. Our principal technical contribution centers on a rigorous analysis of the convergence rates, involving the establishment of both lower and upper bounds on the spectral radius of the Jacobian matrix for each iteration of these algorithms. Furthermore, we explore quasi-Newton methods to enhance the performance of QIS and GD. Specifically, we propose using Anderson mixing and the L-BFGS method for QIS and GD, respectively. These quasi-Newton techniques exhibit remarkable efficiency gains, resulting in orders of magnitude improvements in performance. As an application, our algorithms provide a viable approach to designing Hamiltonian learning algorithms.
Related papers
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Hamiltonian-based Quantum Reinforcement Learning for Neural Combinatorial Optimization [2.536162003546062]
We introduce Hamiltonian-based Quantum Reinforcement Learning (QRL) an approach at the intersection of Quantum Computing (QC) and Neuralial Optimization (NCO)
Our ansatzes show favourable trainability properties when compared to the hardware efficient ansatzes, while also not being limited to graph-based problems, unlike previous works.
In this work, we evaluate the performance of Hamiltonian-based QRL on a diverse set of optimization problems to demonstrate the broad applicability of our approach and compare it to QAOA.
arXiv Detail & Related papers (2024-05-13T14:36:22Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - First-Order Algorithms for Nonlinear Generalized Nash Equilibrium
Problems [88.58409977434269]
We consider the problem of computing an equilibrium in a class of nonlinear generalized Nash equilibrium problems (NGNEPs)
Our contribution is to provide two simple first-order algorithmic frameworks based on the quadratic penalty method and the augmented Lagrangian method.
We provide nonasymptotic theoretical guarantees for these algorithms.
arXiv Detail & Related papers (2022-04-07T00:11:05Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
We propose a quantum-inspired tensor-network-based algorithm for general locally constrained optimization problems.
Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem.
Our results show the effectiveness of this construction and potential applications.
arXiv Detail & Related papers (2022-03-29T05:44:07Z) - Markov Chain Monte-Carlo Enhanced Variational Quantum Algorithms [0.0]
We introduce a variational quantum algorithm that uses Monte Carlo techniques to place analytic bounds on its time-complexity.
We demonstrate both the effectiveness of our technique and the validity of our analysis through quantum circuit simulations for MaxCut instances.
arXiv Detail & Related papers (2021-12-03T23:03:44Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Efficient Algorithms for Approximating Quantum Partition Functions [0.0]
We establish a time approximation algorithm for partition functions of quantum spin models at high temperature.
Our main contribution is a simple and slightly sharper analysis for the case of pairwise interactions on bounded-degree graphs.
arXiv Detail & Related papers (2020-04-24T07:21:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.