論文の概要: Simple but Efficient: A Multi-Scenario Nearline Retrieval Framework for Recommendation on Taobao
- arxiv url: http://arxiv.org/abs/2408.00247v3
- Date: Tue, 06 Aug 2024 03:27:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 18:50:03.466856
- Title: Simple but Efficient: A Multi-Scenario Nearline Retrieval Framework for Recommendation on Taobao
- Title(参考訳): シンプルだが効率的な多シナリオニアライン検索フレームワーク - Taobao のレコメンデーション
- Authors: Yingcai Ma, Ziyang Wang, Yuliang Yan, Jian Wu, Yuning Jiang, Longbin Li, Wen Chen, Jianhang Huang,
- Abstract要約: 本稿では,革新的なマルチシナリオニアライン検索フレームワークを提案する。
さまざまなシナリオからのランキングログをFlinkを通じて活用して動作する。
当社の手法では,製品取引における5%のアップタイク,特に顕著な改善が見られた。
- 参考スコア(独自算出の注目度): 21.01879010592532
- License:
- Abstract: In recommendation systems, the matching stage is becoming increasingly critical, serving as the upper limit for the entire recommendation process. Recently, some studies have started to explore the use of multi-scenario information for recommendations, such as model-based and data-based approaches. However, the matching stage faces significant challenges due to the need for ultra-large-scale retrieval and meeting low latency requirements. As a result, the methods applied at this stage (collaborative filtering and two-tower models) are often designed to be lightweight, hindering the full utilization of extensive information. On the other hand, the ranking stage features the most sophisticated models with the strongest scoring capabilities, but due to the limited screen size of mobile devices, most of the ranked results may not gain exposure or be displayed. In this paper, we introduce an innovative multi-scenario nearline retrieval framework. It operates by harnessing ranking logs from various scenarios through Flink, allowing us to incorporate finely ranked results from other scenarios into our matching stage in near real-time. Besides, we propose a streaming scoring module, which selects a crucial subset from the candidate pool. Implemented on the "Guess You Like" (homepage of the Taobao APP), China's premier e-commerce platform, our method has shown substantial improvements-most notably, a 5% uptick in product transactions. Furthermore, the proposed approach is not only model-free but also highly efficient, suggesting it can be quickly implemented in diverse scenarios and demonstrate promising performance.
- Abstract(参考訳): レコメンデーションシステムでは、マッチングステージがますます重要になってきており、レコメンデーションプロセス全体の上限となっている。
近年,モデルベースやデータベースアプローチなど,複数のシナリオ情報を用いたレコメンデーションの活用が検討されている。
しかし、このマッチングステージは、超大規模検索と低レイテンシ要求を満たす必要があるため、大きな課題に直面している。
その結果、この段階で適用される手法(協調フィルタリングと2-towerモデル)は、しばしば軽量に設計され、広範囲な情報の利用を妨げている。
一方、ランキングステージは最も高度なスコアリング機能を備えたモデルが特徴であるが、モバイルデバイスの画面サイズが限られているため、ランキングの結果が露出したり表示されることはない。
本稿では,革新的なマルチシナリオニアライン検索フレームワークを提案する。
さまざまなシナリオからのランキングログをFlinkを通じて活用することで、他のシナリオからのランク付け結果を、ほぼリアルタイムでマッチングステージに組み込むことができます。
さらに,候補プールから重要なサブセットを選択するストリーミングスコアリングモジュールを提案する。
中国のeコマースプラットフォームである「Guess You Like」(Taobao APPのホームページ)に実装され、当社の手法は大幅に改善され、特に製品取引の5%が上昇した。
さらに,提案手法はモデルフリーだけでなく高効率で,多様なシナリオで迅速に実装でき,有望な性能を示すことができる。
関連論文リスト
- On the test-time zero-shot generalization of vision-language models: Do we really need prompt learning? [13.803180972839213]
テスト時間拡張(MTA)のための堅牢な平均シフトを導入する。
MTAは、この集中的なトレーニング手順を必要とせずに、プロンプトベースの手法を超える。
提案手法を15のデータセット上で広範囲にベンチマークし,MTAの優位性と計算効率を実証する。
論文 参考訳(メタデータ) (2024-05-03T17:34:02Z) - F$^3$Loc: Fusion and Filtering for Floorplan Localization [63.28504055661646]
本研究では,フロアプラン内での自己ローカライズのための効率的なデータ駆動型ソリューションを提案する。
本手法では,地図や位置情報ごとのリトレーニングや,関心領域の画像の大規模なデータベースの要求は不要である。
論文 参考訳(メタデータ) (2024-03-05T23:32:26Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
フラットローカルミニマの新しい視点からマルチモーダルリコメンデータシステムの解析を行う。
我々はミラーグラディエント(MG)と呼ばれる簡潔で効果的な勾配戦略を提案する。
提案したMGは、既存の堅牢なトレーニング手法を補完し、多様な高度なレコメンデーションモデルに容易に拡張できることが判明した。
論文 参考訳(メタデータ) (2024-02-17T12:27:30Z) - Towards All-in-one Pre-training via Maximizing Multi-modal Mutual
Information [77.80071279597665]
マルチモーダル相互情報事前学習(M3I事前学習)を最大化するオールインワン単段階事前学習手法を提案する。
提案手法は,ImageNet分類,オブジェクト検出,LVIS長鎖オブジェクト検出,ADE20kセマンティックセマンティックセマンティックセマンティクスなど,様々なビジョンベンチマークにおける事前学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-17T18:59:49Z) - Temporal Action Detection with Global Segmentation Mask Learning [134.26292288193298]
既存の時間的行動検出(TAD)手法は、ビデオ毎に圧倒的に多くの提案を生成することに依存している。
我々は,グローバルマスク(TAGS)を用いた提案不要な時間行動検出モデルを提案する。
私たちの中核となる考え方は、アクションインスタンスのグローバルセグメンテーションマスクをフルビデオ長で共同で学習することです。
論文 参考訳(メタデータ) (2022-07-14T00:46:51Z) - InsPose: Instance-Aware Networks for Single-Stage Multi-Person Pose
Estimation [37.80984212500406]
本稿では,インスタンス認識型動的ネットワークを用いて,シンプルで効果的な解を提案する。
具体的には、各インスタンスのネットワークパラメータを適応的に(一部)調整するインスタンス対応モジュールを提案する。
我々のソリューションは、コンパクトなエンドツーエンドのトレーニング可能なパイプラインを維持しながら、様々なポーズを認識するためのネットワークの容量と適応性を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-07-19T15:56:09Z) - Multitarget Tracking with Transformers [21.81266872964314]
マルチターゲットトラッキング(MTT)は、ノイズの多い測定を使用して未知のオブジェクトの数の状態を追跡する問題です。
本稿では,Transformer アーキテクチャに基づく MTT の高性能深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-04-01T19:14:55Z) - Learning Salient Boundary Feature for Anchor-free Temporal Action
Localization [81.55295042558409]
時間的行動のローカライゼーションはビデオ理解において重要な課題である。
純粋にアンカーフリーな時間的定位法を初めて提案する。
このモデルには,(i)エンドツーエンドのトレーニング可能な基本予測器,(ii)サリエンシベースのリファインメントモジュール,(iii)いくつかの一貫性制約が含まれている。
論文 参考訳(メタデータ) (2021-03-24T12:28:32Z) - Exploration in two-stage recommender systems [79.50534282841618]
2段階のレコメンデータシステムは、スケーラビリティと保守性のために業界で広く採用されている。
このセットアップの鍵となる課題は、各ステージの最適性能が最適なグローバルパフォーマンスを暗示していないことである。
そこで本研究では,ランクとノミネーター間の探索戦略を同期させる手法を提案する。
論文 参考訳(メタデータ) (2020-09-01T16:52:51Z) - Sample-Rank: Weak Multi-Objective Recommendations Using Rejection
Sampling [0.5156484100374059]
本稿では,マルチゴールサンプリングとユーザ関連度(Sample-Rank)のランク付けによるマーケットプレースの多目的目標への推薦手法を提案する。
提案手法の新規性は,望まれるマルチゴール分布からサンプリングするMOレコメンデーション問題を低減し,プロダクションフレンドリーな学習-ランクモデルを構築することである。
論文 参考訳(メタデータ) (2020-08-24T09:17:18Z) - Self-supervised Learning for Large-scale Item Recommendations [18.19202958502061]
大規模なレコメンデータモデルは、巨大なカタログから最も関連性の高いアイテムを見つけ出す。
コーパスには何百万から数十億ものアイテムがあり、ユーザーはごく少数のユーザーに対してフィードバックを提供する傾向にある。
大規模項目推薦のためのマルチタスク自己教師型学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-25T06:21:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。