Diff3DETR:Agent-based Diffusion Model for Semi-supervised 3D Object Detection
- URL: http://arxiv.org/abs/2408.00286v1
- Date: Thu, 1 Aug 2024 05:04:22 GMT
- Title: Diff3DETR:Agent-based Diffusion Model for Semi-supervised 3D Object Detection
- Authors: Jiacheng Deng, Jiahao Lu, Tianzhu Zhang,
- Abstract summary: 3D object detection is essential for understanding 3D scenes.
Recent developments in semi-supervised methods seek to mitigate this problem by employing a teacher-student framework to generate pseudo-labels for unlabeled point clouds.
We introduce an Agent-based Diffusion Model for Semi-supervised 3D Object Detection (Diff3DETR)
- Score: 33.58208166717537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection is essential for understanding 3D scenes. Contemporary techniques often require extensive annotated training data, yet obtaining point-wise annotations for point clouds is time-consuming and laborious. Recent developments in semi-supervised methods seek to mitigate this problem by employing a teacher-student framework to generate pseudo-labels for unlabeled point clouds. However, these pseudo-labels frequently suffer from insufficient diversity and inferior quality. To overcome these hurdles, we introduce an Agent-based Diffusion Model for Semi-supervised 3D Object Detection (Diff3DETR). Specifically, an agent-based object query generator is designed to produce object queries that effectively adapt to dynamic scenes while striking a balance between sampling locations and content embedding. Additionally, a box-aware denoising module utilizes the DDIM denoising process and the long-range attention in the transformer decoder to refine bounding boxes incrementally. Extensive experiments on ScanNet and SUN RGB-D datasets demonstrate that Diff3DETR outperforms state-of-the-art semi-supervised 3D object detection methods.
Related papers
- STONE: A Submodular Optimization Framework for Active 3D Object Detection [20.54906045954377]
Key requirement for training an accurate 3D object detector is the availability of a large amount of LiDAR-based point cloud data.
This paper proposes a unified active 3D object detection framework, for greatly reducing the labeling cost of training 3D object detectors.
arXiv Detail & Related papers (2024-10-04T20:45:33Z) - Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection [77.23918785277404]
We present Diffusion-SS3D, a new perspective of enhancing the quality of pseudo-labels via the diffusion model for semi-supervised 3D object detection.
Specifically, we include noises to produce corrupted 3D object size and class label, distributions, and then utilize the diffusion model as a denoising process to obtain bounding box outputs.
We conduct experiments on the ScanNet and SUN RGB-D benchmark datasets to demonstrate that our approach achieves state-of-the-art performance against existing methods.
arXiv Detail & Related papers (2023-12-05T18:54:03Z) - Learning Object-level Point Augmentor for Semi-supervised 3D Object
Detection [85.170578641966]
We propose an object-level point augmentor (OPA) that performs local transformations for semi-supervised 3D object detection.
In this way, the resultant augmentor is derived to emphasize object instances rather than irrelevant backgrounds.
Experiments on the ScanNet and SUN RGB-D datasets show that the proposed OPA performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2022-12-19T06:56:14Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Object DGCNN: 3D Object Detection using Dynamic Graphs [32.090268859180334]
3D object detection often involves complicated training and testing pipelines.
Inspired by recent non-maximum suppression-free 2D object detection models, we propose a 3D object detection architecture on point clouds.
arXiv Detail & Related papers (2021-10-13T17:59:38Z) - Semi-supervised 3D Object Detection via Adaptive Pseudo-Labeling [18.209409027211404]
3D object detection is an important task in computer vision.
Most existing methods require a large number of high-quality 3D annotations, which are expensive to collect.
We propose a novel semi-supervised framework based on pseudo-labeling for outdoor 3D object detection tasks.
arXiv Detail & Related papers (2021-08-15T02:58:43Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving.
In this work, we quantify the impact introduced by each sub-task and find the localization error' is the vital factor in restricting monocular 3D detection.
arXiv Detail & Related papers (2021-03-30T10:38:01Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.