Discretizing Continuous Action Space with Unimodal Probability Distributions for On-Policy Reinforcement Learning
- URL: http://arxiv.org/abs/2408.00309v1
- Date: Thu, 1 Aug 2024 06:06:53 GMT
- Title: Discretizing Continuous Action Space with Unimodal Probability Distributions for On-Policy Reinforcement Learning
- Authors: Yuanyang Zhu, Zhi Wang, Yuanheng Zhu, Chunlin Chen, Dongbin Zhao,
- Abstract summary: We introduce a straightforward architecture that constrains the discrete policy to be unimodal using Poisson probability distributions.
We conduct experiments to show that the discrete policy with the unimodal probability distribution provides significantly faster convergence and higher performance for on-policy reinforcement learning algorithms.
- Score: 20.48276559928517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For on-policy reinforcement learning, discretizing action space for continuous control can easily express multiple modes and is straightforward to optimize. However, without considering the inherent ordering between the discrete atomic actions, the explosion in the number of discrete actions can possess undesired properties and induce a higher variance for the policy gradient estimator. In this paper, we introduce a straightforward architecture that addresses this issue by constraining the discrete policy to be unimodal using Poisson probability distributions. This unimodal architecture can better leverage the continuity in the underlying continuous action space using explicit unimodal probability distributions. We conduct extensive experiments to show that the discrete policy with the unimodal probability distribution provides significantly faster convergence and higher performance for on-policy reinforcement learning algorithms in challenging control tasks, especially in highly complex tasks such as Humanoid. We provide theoretical analysis on the variance of the policy gradient estimator, which suggests that our attentively designed unimodal discrete policy can retain a lower variance and yield a stable learning process.
Related papers
- Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality.
We propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO)
Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions.
We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions.
arXiv Detail & Related papers (2024-05-25T10:45:46Z) - Policy Bifurcation in Safe Reinforcement Learning [35.75059015441807]
In some scenarios, the feasible policy should be discontinuous or multi-valued, interpolating between discontinuous local optima can inevitably lead to constraint violations.
We are the first to identify the generating mechanism of such a phenomenon, and employ topological analysis to rigorously prove the existence of bifurcation in safe RL.
We propose a safe RL algorithm called multimodal policy optimization (MUPO), which utilizes a Gaussian mixture distribution as the policy output.
arXiv Detail & Related papers (2024-03-19T15:54:38Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - PACER: A Fully Push-forward-based Distributional Reinforcement Learning Algorithm [28.48626438603237]
PACER consists of a distributional critic, an actor and a sample-based encourager.
Push-forward operator is leveraged in both the critic and actor to model the return distributions and policies respectively.
A sample-based utility value policy gradient is established for the push-forward policy update.
arXiv Detail & Related papers (2023-06-11T09:45:31Z) - Policy Representation via Diffusion Probability Model for Reinforcement
Learning [67.56363353547775]
We build a theoretical foundation of policy representation via the diffusion probability model.
We present a convergence guarantee for diffusion policy, which provides a theory to understand the multimodality of diffusion policy.
We propose the DIPO which is an implementation for model-free online RL with DIffusion POlicy.
arXiv Detail & Related papers (2023-05-22T15:23:41Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
Offline reinforcement learning (RL) aims to learn an optimal policy using a previously collected static dataset.
We introduce Diffusion Q-learning (Diffusion-QL) that utilizes a conditional diffusion model to represent the policy.
We show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks.
arXiv Detail & Related papers (2022-08-12T09:54:11Z) - A Prescriptive Dirichlet Power Allocation Policy with Deep Reinforcement
Learning [6.003234406806134]
In this work, we propose the Dirichlet policy for continuous allocation tasks and analyze the bias and variance of its policy gradients.
We demonstrate that the Dirichlet policy is bias-free and provides significantly faster convergence and better performance than the Gaussian-softmax policy.
The experimental results show the potential to prescribe optimal operation, improve the efficiency and sustainability of multi-power source systems.
arXiv Detail & Related papers (2022-01-20T20:41:04Z) - Towards Robust Bisimulation Metric Learning [3.42658286826597]
Bisimulation metrics offer one solution to representation learning problem.
We generalize value function approximation bounds for on-policy bisimulation metrics to non-optimal policies.
We find that these issues stem from an underconstrained dynamics model and an unstable dependence of the embedding norm on the reward signal.
arXiv Detail & Related papers (2021-10-27T00:32:07Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.