論文の概要: Towards Evolutionary-based Automated Machine Learning for Small Molecule Pharmacokinetic Prediction
- arxiv url: http://arxiv.org/abs/2408.00421v1
- Date: Thu, 1 Aug 2024 09:46:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 21:05:55.576125
- Title: Towards Evolutionary-based Automated Machine Learning for Small Molecule Pharmacokinetic Prediction
- Title(参考訳): 小分子薬物動態予測のための進化型自動機械学習に向けて
- Authors: Alex G. C. de Sá, David B. Ascher,
- Abstract要約: 小分子の性質は、医薬品開発の初期段階において不可欠である。
既存のメソッドにはパーソナライゼーションがなく、手作業によるMLアルゴリズムやパイプラインに依存している。
分子特性の予測に特化して設計された進化型自動ML法(AutoML)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) is revolutionising drug discovery by expediting the prediction of small molecule properties essential for developing new drugs. These properties -- including absorption, distribution, metabolism and excretion (ADME)-- are crucial in the early stages of drug development since they provide an understanding of the course of the drug in the organism, i.e., the drug's pharmacokinetics. However, existing methods lack personalisation and rely on manually crafted ML algorithms or pipelines, which can introduce inefficiencies and biases into the process. To address these challenges, we propose a novel evolutionary-based automated ML method (AutoML) specifically designed for predicting small molecule properties, with a particular focus on pharmacokinetics. Leveraging the advantages of grammar-based genetic programming, our AutoML method streamlines the process by automatically selecting algorithms and designing predictive pipelines tailored to the particular characteristics of input molecular data. Results demonstrate AutoML's effectiveness in selecting diverse ML algorithms, resulting in comparable or even improved predictive performances compared to conventional approaches. By offering personalised ML-driven pipelines, our method promises to enhance small molecule research in drug discovery, providing researchers with a valuable tool for accelerating the development of novel therapeutic drugs.
- Abstract(参考訳): 機械学習(ML)は、新薬開発に必要な小さな分子特性の予測を迅速化することによって、薬物発見に革命をもたらす。
これらの性質(吸収、分布、代謝、排他性(ADME)を含む)は、生物における薬物の経過、すなわち薬物の薬物動態の理解を提供するため、医薬品開発の初期段階において不可欠である。
しかしながら、既存のメソッドにはパーソナライズが欠如しており、手作業によるMLアルゴリズムやパイプラインに依存しているため、プロセスに非効率性とバイアスが生じる可能性がある。
これらの課題に対処するために,小分子特性の予測に特化して設計された新しい進化型自動ML法(AutoML)を提案する。
文法に基づく遺伝的プログラミングの利点を活用することで、AutoMLはアルゴリズムを自動選択し、入力分子データの特定の特性に合わせた予測パイプラインを設計することで、プロセスの合理化を図る。
結果は、AutoMLが多様なMLアルゴリズムを選択する上で有効であることを示し、その結果、従来のアプローチと比較して、同等または改善された予測性能が得られる。
ML駆動のパイプラインをパーソナライズすることで、薬物発見における小さな分子の研究を強化することを約束し、新しい治療薬の開発を加速するための貴重なツールを研究者に提供する。
関連論文リスト
- Small Molecule Drug Discovery Through Deep Learning:Progress, Challenges, and Opportunities [34.72068278499029]
深層学習(DL)技術の急速な発展により,DLを基盤とした小型分子ドラッグ発見法は優れた性能を発揮した。
本稿では, DLをベースとした小分子創薬における最近の重要な課題と代表的手法を体系的に要約し, 一般化する。
論文 参考訳(メタデータ) (2025-02-13T05:24:52Z) - DrugAgent: Automating AI-aided Drug Discovery Programming through LLM Multi-Agent Collaboration [31.892593155710625]
本稿では,薬物発見における機械学習(ML)プログラムの自動化を目的としたマルチエージェントフレームワークであるDrarmAgentを紹介する。
DrugAgentは、特定の要件を特定し、ドメイン固有のツールを構築することで、ドメインの専門知識を取り入れている。
例えば、DarmAgentは、データ取得からADMET予測タスクのパフォーマンス評価まで、MLプログラミングパイプラインをエンドツーエンドで完了し、最終的に最良のモデルを選択することができる。
論文 参考訳(メタデータ) (2024-11-24T03:06:59Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
大規模言語モデル(LLM)の創薬・開発分野への統合は、重要なパラダイムシフトである。
これらの先進的な計算モデルが、ターゲット・ディスリーズ・リンクを明らかにし、複雑なバイオメディカルデータを解釈し、薬物分子設計を強化し、薬物の有効性と安全性を予測し、臨床治験プロセスを促進する方法について検討する。
論文 参考訳(メタデータ) (2024-09-06T02:03:38Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
AIによる薬物発見の大きな課題は、高品質なデータの不足である。
薬物動態の4つの重要なパラメータを同時に予測するPEMAL法を開発した。
実験の結果,PEMALは一般的なグラフニューラルネットワークに比べてデータ需要を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-04-16T07:42:55Z) - Optimizing Drug Design by Merging Generative AI With Active Learning
Frameworks [2.6062146828550903]
我々は、変分オートエンコーダとアクティブラーニングステップに基づいて、ジェネレーティブAI(GM)ワークフローを開発した。
デザインされたGMワークフローは、薬物の類似性、合成可能性、類似性、ドッキングスコアなどの分子メトリクスから反復的に学習する。
GMワークフローで推定される高親和性分子の割合は,トレーニングデータより有意に大きかった。
論文 参考訳(メタデータ) (2023-05-04T13:25:14Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
分子レグレッション問題に対する一般化能力を高めるために,MROTと呼ばれる新しい最適輸送ベースアルゴリズムを開発した。
MROTは最先端のモデルよりも優れており、新しい物質の発見を加速する有望な可能性を示している。
論文 参考訳(メタデータ) (2022-02-13T04:56:18Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Artificial Intelligence based Autonomous Molecular Design for Medical
Therapeutic: A Perspective [9.371378627575883]
ドメイン認識機械学習(ML)モデルは、小さな分子治療設計の加速にますます採用されている。
我々は、各コンポーネントによって達成された最新のブレークスルーと、このような自律型AIとMLワークフローをどのように実現できるかを提示する。
論文 参考訳(メタデータ) (2021-02-10T00:43:46Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
深層学習は サイリコの何十億もの分子を 迅速にスクリーニングする 重要なツールとなりました
その重要性にもかかわらず、厳密なクラス不均衡、高い決定しきい値、いくつかのデータセットにおける基底真理ラベルの欠如など、これらのモデルのトレーニングにおいて重大な課題が続いている。
このような場合、クラス不均衡に対するロバスト性から、レシーバ動作特性(ROC)を直接最適化することを好んで論じる。
論文 参考訳(メタデータ) (2020-06-25T08:46:37Z) - Predicting drug properties with parameter-free machine learning:
Pareto-Optimal Embedded Modeling (POEM) [0.13854111346209866]
POEMは、最適化を必要とせず、信頼性の高い予測モデルを生成するために開発された非パラメトリックな教師付きMLアルゴリズムである。
我々は、業界標準のMLアルゴリズムと比較してPOEMをベンチマークし、17の分類タスクにまたがって結果を公表する。
論文 参考訳(メタデータ) (2020-02-11T17:20:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。