論文の概要: DiscipLink: Unfolding Interdisciplinary Information Seeking Process via Human-AI Co-Exploration
- arxiv url: http://arxiv.org/abs/2408.00447v1
- Date: Thu, 1 Aug 2024 10:36:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 20:56:07.839952
- Title: DiscipLink: Unfolding Interdisciplinary Information Seeking Process via Human-AI Co-Exploration
- Title(参考訳): DiscipLink:人間とAIの共同探索による学際的情報探索プロセスの展開
- Authors: Chengbo Zheng, Yuanhao Zhang, Zeyu Huang, Chuhan Shi, Minrui Xu, Xiaojuan Ma,
- Abstract要約: 本稿では,研究者と大規模言語モデル(LLM)の協調を支援する対話型システムであるDiscipLinkを紹介する。
ユーザの関心事に基づいて、DiscipLinkは、関連する研究分野の観点から探索的な質問を開始する。
本評価は, 対象内比較実験とオープンエンド探索研究からなり, ディシプリンクは, 学際境界を断ち切る上で, 研究者を効果的に支援できることを示した。
- 参考スコア(独自算出の注目度): 34.23942131024738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interdisciplinary studies often require researchers to explore literature in diverse branches of knowledge. Yet, navigating through the highly scattered knowledge from unfamiliar disciplines poses a significant challenge. In this paper, we introduce DiscipLink, a novel interactive system that facilitates collaboration between researchers and large language models (LLMs) in interdisciplinary information seeking (IIS). Based on users' topics of interest, DiscipLink initiates exploratory questions from the perspectives of possible relevant fields of study, and users can further tailor these questions. DiscipLink then supports users in searching and screening papers under selected questions by automatically expanding queries with disciplinary-specific terminologies, extracting themes from retrieved papers, and highlighting the connections between papers and questions. Our evaluation, comprising a within-subject comparative experiment and an open-ended exploratory study, reveals that DiscipLink can effectively support researchers in breaking down disciplinary boundaries and integrating scattered knowledge in diverse fields. The findings underscore the potential of LLM-powered tools in fostering information-seeking practices and bolstering interdisciplinary research.
- Abstract(参考訳): 学際的な研究は、研究者が様々な知識の分野の文学を探求することを要求することが多い。
しかし、未知の分野から非常に散らばった知識をナビゲートすることは、大きな課題となる。
本稿では,学際情報探索(IIS)における研究者と大規模言語モデル(LLM)の協調を支援する対話型システムであるDiscipLinkを紹介する。
ユーザの関心事に基づいて、DiscipLinkは、関連する研究分野の観点から探索的な質問を開始し、ユーザーはこれらの質問をさらにカスタマイズすることができる。
次にDiscipLinkは、ディシプリナ固有の用語によるクエリを自動的に拡張し、検索した論文からテーマを抽出し、論文と質問の関連性を強調することによって、選択した質問の下で論文を検索およびスクリーニングするユーザをサポートする。
本研究は, 対象内比較実験とオープンエンド探索研究から, ディシプリンクが, 学際境界を破滅させ, 様々な分野に散在する知識を統合する上で, 研究者を効果的に支援できることを明らかにする。
この知見は、情報探索の実践と学際的な研究の促進において、LCMを利用したツールの可能性を強調している。
関連論文リスト
- Automating Chapter-Level Classification for Electronic Theses and Dissertations [0.0]
本稿では,ETDチャプタを自動的に分類する機械学習とAI駆動型ソリューションを提案する。
この解決策は、発見可能性を改善し、章の理解を促進することを目的としている。
我々は、学際的な研究を支援し、ETDをよりアクセスしやすくすることを目指している。
論文 参考訳(メタデータ) (2024-11-26T17:27:18Z) - "It answers questions that I didn't know I had": Ph.D. Students' Evaluation of an Information Sharing Knowledge Graph [0.0]
学際的なPhDプログラムは、学生が必要とする重要な情報が容易に入手できないため、困難である。
複数の情報源から抽出した臨界カテゴリとその関係情報を含む知識グラフを提案する。
本研究では,情報交換と意思決定を容易にするための参加型知識グラフのユーザビリティを評価する。
論文 参考訳(メタデータ) (2024-06-11T21:25:14Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
本稿では,研究者にパーソナライズされた効率的な調査支援を目的とした会話システムであるSurveyAgentを紹介する。
SurveyAgentは3つの重要なモジュールを統合している。文書を整理するための知識管理、関連する文献を発見するための勧告、より深いレベルでコンテンツを扱うためのクエリ回答だ。
本評価は,研究活動の合理化におけるSurveyAgentの有効性を実証し,研究者の科学文献との交流を促進する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-09T15:01:51Z) - Hierarchical Tree-structured Knowledge Graph For Academic Insight Survey [11.556954590485319]
調査は、研究トレーニングを欠いている初心者研究者にとって、常に課題となっている。
本研究は,階層的な木構造知識グラフを確立することにより,初心者研究者を対象とした研究インサイトサーベイを支援することを目的とする。
論文 参考訳(メタデータ) (2024-02-07T13:54:06Z) - DiscoverPath: A Knowledge Refinement and Retrieval System for
Interdisciplinarity on Biomedical Research [96.10765714077208]
従来のキーワードベースの検索エンジンは、特定の用語に慣れていないユーザーを支援するのに不足している。
本稿では, バイオメディカル研究のための知識グラフに基づく紙検索エンジンを提案し, ユーザエクスペリエンスの向上を図る。
DiscoverPathと呼ばれるこのシステムは、名前付きエンティティ認識(NER)とPOSタグを使って、記事の要約から用語や関係を抽出し、KGを作成する。
論文 参考訳(メタデータ) (2023-09-04T20:52:33Z) - A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning [58.107474025048866]
蓄積とは、以前に獲得した知識の喪失または劣化を指す。
フォッテッティングは、深層学習における様々な研究領域でよく見られる現象である。
論文 参考訳(メタデータ) (2023-07-16T16:27:58Z) - Covidia: COVID-19 Interdisciplinary Academic Knowledge Graph [99.28342534985146]
新型コロナウイルスに関する既存の文献や知識プラットフォームは、生物学や医学に関する論文の収集にのみ焦点が当てられている。
我々は、異なるドメインにおけるCOVID-19の知識間のギャップを埋めるために、Covidia, COVID-19の学際的知識グラフを提案する。
論文 参考訳(メタデータ) (2023-04-14T16:45:38Z) - The Semantic Reader Project: Augmenting Scholarly Documents through
AI-Powered Interactive Reading Interfaces [54.2590226904332]
本稿では,研究論文を対象とした動的読解インタフェースの自動作成を目的としたセマンティック・リーダー・プロジェクトについて述べる。
10のプロトタイプインターフェースが開発され、300人以上の参加者と現実世界のユーザが読書体験を改善している。
本論文は,研究論文を読む際,学者と公衆の面を巡って構築する。
論文 参考訳(メタデータ) (2023-03-25T02:47:09Z) - A Search Engine for Scientific Publications: a Cybersecurity Case Study [0.7734726150561086]
本研究は,情報検索と読解アルゴリズムを組み合わせた科学出版のための新しい検索エンジンを提案する。
提案手法は,サイバーセキュリティの文脈に適用されているものの,高度な一般化能力を示し,他の異なる知識領域の下で容易に適用可能である。
論文 参考訳(メタデータ) (2021-06-30T20:10:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。