論文の概要: Contrastive Learning with Adaptive Neighborhoods for Brain Age Prediction on 3D Stiffness Maps
- arxiv url: http://arxiv.org/abs/2408.00527v2
- Date: Sun, 10 Nov 2024 21:37:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:04:01.487315
- Title: Contrastive Learning with Adaptive Neighborhoods for Brain Age Prediction on 3D Stiffness Maps
- Title(参考訳): 3次元剛性マップの脳年齢予測のための適応的近隣住民によるコントラスト学習
- Authors: Jakob Träuble, Lucy Hiscox, Curtis Johnson, Carola-Bibiane Schönlieb, Gabriele Kaminski Schierle, Angelica Aviles-Rivero,
- Abstract要約: そこで本研究では,サンプルの局所的な領域に着目して,トレーニングプロセス中に動的に適応する新たなコントラスト損失を提案する。
この研究は、脳の年齢を予測するために、コンパイルされた剛性マップを用いて、脳の機械的特性に対する自己教師あり学習の最初の応用を示す。
- 参考スコア(独自算出の注目度): 8.14243193774551
- License:
- Abstract: In the field of neuroimaging, accurate brain age prediction is pivotal for uncovering the complexities of brain aging and pinpointing early indicators of neurodegenerative conditions. Recent advancements in self-supervised learning, particularly in contrastive learning, have demonstrated greater robustness when dealing with complex datasets. However, current approaches often fall short in generalizing across non-uniformly distributed data, prevalent in medical imaging scenarios. To bridge this gap, we introduce a novel contrastive loss that adapts dynamically during the training process, focusing on the localized neighborhoods of samples. Moreover, we expand beyond traditional structural features by incorporating brain stiffness - a mechanical property previously underexplored yet promising due to its sensitivity to age-related changes. This work presents the first application of self-supervised learning to brain mechanical properties, using compiled stiffness maps from various clinical studies to predict brain age. Our approach, featuring dynamic localized loss, consistently outperforms existing state-of-the-art methods, demonstrating superior performance and paving the way for new directions in brain aging research.
- Abstract(参考訳): 神経画像学の分野では、脳の老化の複雑さを解明し、神経変性状態の早期の指標を指摘するために、正確な脳年齢予測が重要である。
近年の自己教師型学習の進歩、特に対照的な学習は、複雑なデータセットを扱う際により堅牢性を示す。
しかしながら、現在のアプローチは、医療画像のシナリオでよく見られる、一様でない分散データにまたがる一般化において不足することが多い。
このギャップを埋めるために、我々は、サンプルの局所的な近傍に焦点をあてて、トレーニングプロセス中に動的に適応する、新しい対照的な損失を導入する。
さらに,脳の硬さを取り入れることで,従来の構造的特徴を超えて拡張する。
本研究は,脳の年齢を予測するために,様々な臨床研究から収集された剛性マップを用いて,自己教師型学習を脳の機械的特性に適用した最初の例である。
我々のアプローチは、ダイナミックな局所的損失を特徴とし、既存の最先端の手法を一貫して上回り、優れたパフォーマンスを示し、脳老化研究における新たな方向性の道を開く。
関連論文リスト
- SynthBA: Reliable Brain Age Estimation Across Multiple MRI Sequences and Resolutions [4.543154658281538]
脳年齢と時間年齢のギャップは、PAD(予測年齢差)と呼ばれ、神経変性の状況を調べるために利用されてきた。
脳年齢はMRIと機械学習技術を用いて予測できる。
我々は、脳年齢を予測するために設計された堅牢なディープラーニングモデル、Synthetic Brain Age(SynthBA)を紹介する。
論文 参考訳(メタデータ) (2024-06-01T08:58:40Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
時間的年齢に関する脳年齢の増加は、神経変性と認知低下に対する脆弱性の増加を反映している。
NeuroVNNは、時系列年齢を予測するために、健康な人口の回帰モデルとして事前訓練されている。
NeuroVNNは、脳の年齢に解剖学的解釈性を加え、任意の脳のアトラスに従って計算されたデータセットへの転移を可能にする「スケールフリー」特性を持つ。
論文 参考訳(メタデータ) (2024-02-12T14:46:31Z) - Does pre-training on brain-related tasks results in better
deep-learning-based brain age biomarkers? [4.114671069824331]
脳年齢予測のための深層学習モデルに対する事前学習段階の影響について検討する。
軽度認知障害およびアルツハイマー病患者の画像から得られた脳年齢バイオマーカーを検証した。
論文 参考訳(メタデータ) (2023-07-11T13:16:04Z) - Explainable Brain Age Prediction using coVariance Neural Networks [94.81523881951397]
大脳皮質の厚み特徴を用いた脳年齢予測のための説明駆動・解剖学的解釈可能なフレームワークを提案する。
具体的には、私たちの脳年齢予測フレームワークは、アルツハイマー病(AD)の脳年齢ギャップの粗い指標を超えて拡張されます。
我々は2つの重要な観察を行う: VNNは、貢献する脳の領域を同定することによって、ADの脳年齢差を高めるために解剖学的解釈性を割り当てることができる。
論文 参考訳(メタデータ) (2023-05-27T22:28:25Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - Modeling cognitive load as a self-supervised brain rate with
electroencephalography and deep learning [2.741266294612776]
本研究では,脳波データからメンタルワークロードをモデリングするための,新たな自己教師型手法を提案する。
脳波データからスペクトル地形図を空間的に保存して脳速度変数に適合させることができる畳み込みリカレントニューラルネットワークである。
学習した認知活性化の準安定なブロックの存在は、それらは畳み込みによって誘導され、時間とともに互いに依存していないように見えるため、脳反応の非定常的性質と直感的に一致している。
論文 参考訳(メタデータ) (2022-09-21T07:44:21Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
本稿では,畳み込みニューラルネットワークを用いた3次元脳磁気共鳴(MR)画像からの脳年齢回帰の課題に着目した。
予測モデルの性能を損なうことなく、できるだけ多くのノイズを入力に追加することを目的としたノイズモデルを実装した。
本手法は,英国バイオバンクの13750個の脳MR画像を用いて検討し,既存の神経病理学文献と一致している。
論文 参考訳(メタデータ) (2021-08-11T18:08:09Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
脳MRIにおける構造-機能変換を初めて学習することにより,潜在的な解決策を提案する。
次に,大規模構造スキャンから空間整合機能画像を合成する。
時間的ローブは最も予測可能な構造領域であり、パリエト後頭ローブはモデルで最も予測可能な機能領域である。
論文 参考訳(メタデータ) (2021-04-10T03:16:33Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z) - Towards a predictive spatio-temporal representation of brain data [0.2580765958706854]
fMRIデータセットは複雑でヘテロジニアスな時系列で構成されていることを示す。
深層学習と幾何学的深層学習の様々なモデリング手法を比較し,今後の研究の道を開く。
私たちは、私たちの方法論の進歩が最終的に、健康と病気の脳のダイナミクスをより微妙に理解することで、臨床的および計算学的に関連があることを期待しています。
論文 参考訳(メタデータ) (2020-02-29T18:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。