The Energy Cost of Artificial Intelligence of Things Lifecycle
- URL: http://arxiv.org/abs/2408.00540v2
- Date: Wed, 19 Feb 2025 10:23:57 GMT
- Title: The Energy Cost of Artificial Intelligence of Things Lifecycle
- Authors: Shih-Kai Chou, Jernej Hribar, Vid Hanžel, Mihael Mohorčič, Carolina Fortuna,
- Abstract summary: We propose a new metric, the Energy Cost of AI lifecycle (eCAL)
eCAL captures the energy consumption throughout the architectural components and lifecycle of an AI-powered wireless system.
We show that the better a model and the more it is used, the more energy efficient an inference is.
- Score: 0.44739156031315913
- License:
- Abstract: Artificial Intelligence (AI) coupled with the existing Internet of Things (IoT) enables more autonomous operations across various economic sectors. While this paradigm shift results in increased energy consumption it is difficult to quantify the end-to-end energy consumption of such systems with the conventional metrics as they either focus on the communication, the computation infrastructure or model development. To address this, we propose a new metric, the Energy Cost of AI lifecycle (eCAL). eCAL captures the energy consumption throughout the architectural components and lifecycle of an AI-powered wireless system by analyzing the complexity of data collection and manipulation in individual components and deriving overall and per-bit energy consumption. We show that the better a model and the more it is used, the more energy efficient an inference is. For an example Artificial Intelligence of Things (AIoT) configuration, eCAL for making 100 inferences is 2.73 times higher than for 1000 inferences. Additionally, we developed a modular open source simulation tool to enable researchers, practitioners, and engineers to calculate the end-to-end energy cost with various configurations and across various systems, ensuring adaptability to diverse use cases.
Related papers
- Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout product life cycles, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
GenAI can drive the construction and update of DTs to improve predictive accuracy and prepare for diverse smart manufacturing.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Present and Future of AI in Renewable Energy Domain : A Comprehensive Survey [0.0]
Artificial intelligence (AI) has become a crucial instrument for streamlining processes in various industries.
Nine AI-based strategies are identified here to assist Renewable Energy (RE) in contemporary power systems.
This study also addressed three main topics: using AI technology for renewable power generation, utilizing AI for renewable energy forecasting, and optimizing energy systems.
arXiv Detail & Related papers (2024-06-22T04:36:09Z) - Toward Cross-Layer Energy Optimizations in AI Systems [4.871463967255196]
Energy efficiency is likely to become the gating factor toward adoption of artificial intelligence.
With the pervasive usage of artificial intelligence (AI) and machine learning (ML) tools and techniques, their energy efficiency is likely to become the gating factor toward adoption.
This is because generative AI (GenAI) models are massive energy hogs.
Inference consumes even more energy, because a model trained once serve millions.
arXiv Detail & Related papers (2024-04-10T01:35:17Z) - Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
generative, multi-purpose AI systems promise a unified approach to building machine learning (ML) models into technology.
This ambition of generality'' comes at a steep cost to the environment, given the amount of energy these systems require and the amount of carbon that they emit.
We measure deployment cost as the amount of energy and carbon required to perform 1,000 inferences on representative benchmark dataset using these models.
We conclude with a discussion around the current trend of deploying multi-purpose generative ML systems, and caution that their utility should be more intentionally weighed against increased costs in terms of energy and emissions
arXiv Detail & Related papers (2023-11-28T15:09:36Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - EPAM: A Predictive Energy Model for Mobile AI [6.451060076703027]
We introduce a comprehensive study of mobile AI applications considering different deep neural network (DNN) models and processing sources.
We measure the latency, energy consumption, and memory usage of all the models using four processing sources.
Our study highlights important insights, such as how mobile AI behaves in different applications (vision and non-vision) using CPU, GPU, and NNAPI.
arXiv Detail & Related papers (2023-03-02T09:11:23Z) - Precise Energy Consumption Measurements of Heterogeneous Artificial
Intelligence Workloads [0.534434568021034]
We present measurements of the energy consumption of two typical applications of deep learning models on different types of compute nodes.
One advantage of our approach is that the information on energy consumption is available to all users of the supercomputer.
arXiv Detail & Related papers (2022-12-03T21:40:55Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.