Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models
- URL: http://arxiv.org/abs/2404.18077v2
- Date: Wed, 17 Jul 2024 15:32:46 GMT
- Title: Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models
- Authors: Jinbo Wen, Ruichen Zhang, Dusit Niyato, Jiawen Kang, Hongyang Du, Yang Zhang, Zhu Han,
- Abstract summary: Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
- Score: 67.0243099823109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By integrating Artificial Intelligence (AI) with the Internet of Things (IoT), Artificial Intelligence of Things (AIoT) has revolutionized many fields. However, AIoT is facing the challenges of energy consumption and carbon emissions due to the continuous advancement of mobile technology. Fortunately, Generative AI (GAI) holds immense potential to reduce carbon emissions of AIoT due to its excellent reasoning and generation capabilities. In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT. Specifically, we first study the main impacts that cause carbon emissions in AIoT, and then introduce GAI techniques and their relations to carbon emissions. We then explore the application prospects of GAI in low-carbon AIoT, focusing on how GAI can reduce carbon emissions of network components. Subsequently, we propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules to generate more accurate and reliable optimization problems. Furthermore, we utilize Generative Diffusion Models (GDMs) to identify optimal strategies for carbon emission reduction. Numerical results demonstrate the effectiveness of the proposed framework. Finally, we insightfully provide open research directions for low-carbon AIoT.
Related papers
- Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
A carbon market is a market-based tool that incentivizes economic agents to align individual profits with the global utility.
We propose an adaptive mechanism design framework, simulating the market using hierarchical, model-free multi-agent reinforcement learning (MARL)
Numerical results show MARL enables government agents to balance productivity, equality, and carbon emissions.
arXiv Detail & Related papers (2024-06-12T05:08:51Z) - OpenCarbonEval: A Unified Carbon Emission Estimation Framework in Large-Scale AI Models [16.93272879722972]
OpenCarbonEval is a framework for integrating large-scale models across diverse modalities to predict carbon emissions.
We show that OpenCarbonEval achieves superior performance in predicting carbon emissions for both visual models and language models.
arXiv Detail & Related papers (2024-05-21T14:50:20Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
We evaluate the CO2 emissions of well-known large language models, which have an especially high carbon footprint due to their significant amount of model parameters.
We argue for the training of LLMs in a way that is responsible and sustainable by suggesting measures for reducing carbon emissions.
arXiv Detail & Related papers (2024-04-01T15:01:45Z) - Toward Sustainable GenAI using Generation Directives for Carbon-Friendly Large Language Model Inference [8.567865555551911]
This paper presents Sprout, an innovative framework designed to reduce the carbon footprint of generative Large Language Model (LLM) inference services.
Our proposed method balances the need for ecological sustainability with the demand for high-quality generation outcomes.
We demonstrate a significant reduction in carbon emissions by over 40% in real-world evaluations using the Llama2 and global electricity grid data.
arXiv Detail & Related papers (2024-03-19T16:53:53Z) - Towards Net-Zero Carbon Emissions in Network AI for 6G and Beyond [36.02419793345877]
A global effort has been initiated to reduce the worldwide greenhouse gas (GHG) emissions, primarily carbon emissions, by half by 2030 and reach net-zero by 2050.
Despite the energy efficiency improvement in both hardware and software designs, the overall energy consumption and carbon emission of mobile networks are still increasing.
A novel joint dynamic energy trading and task allocation optimization framework, called DETA, has been introduced to reduce the overall carbon emissions.
arXiv Detail & Related papers (2023-09-18T12:24:06Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.