Empowering Snapshot Compressive Imaging: Spatial-Spectral State Space Model with Across-Scanning and Local Enhancement
- URL: http://arxiv.org/abs/2408.00629v1
- Date: Thu, 1 Aug 2024 15:14:10 GMT
- Title: Empowering Snapshot Compressive Imaging: Spatial-Spectral State Space Model with Across-Scanning and Local Enhancement
- Authors: Wenzhe Tian, Haijin Zeng, Yin-Ping Zhao, Yongyong Chen, Zhen Wang, Xuelong Li,
- Abstract summary: We introduce a State Space Model with Across-Scanning and Local Enhancement, named ASLE-SSM, that employs a Spatial-Spectral SSM for global-local balanced context encoding and cross-channel interaction promoting.
Experimental results illustrate ASLE-SSM's superiority over existing state-of-the-art methods, with an inference speed 2.4 times faster than Transformer-based MST and saving 0.12 (M) of parameters.
- Score: 51.557804095896174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Snapshot Compressive Imaging (SCI) relies on decoding algorithms such as CNN or Transformer to reconstruct the hyperspectral image (HSI) from its compressed measurement. Although existing CNN and Transformer-based methods have proven effective, CNNs are limited by their inadequate modeling of long-range dependencies, while Transformer ones face high computational costs due to quadratic complexity. Recent Mamba models have demonstrated superior performance over CNN and Transformer-based architectures in some visual tasks, but these models have not fully utilized the local similarities in both spatial and spectral dimensions. Moreover, the long-sequence modeling capability of SSM may offer an advantage in processing the numerous spectral bands for HSI reconstruction, which has not yet been explored. In this paper, we introduce a State Space Model with Across-Scanning and Local Enhancement, named ASLE-SSM, that employs a Spatial-Spectral SSM for global-local balanced context encoding and cross-channel interaction promoting. Specifically, we introduce local scanning in the spatial dimension to balance the global and local receptive fields, and then propose our across-scanning method based on spatial-spectral local cubes to leverage local similarities between adjacent spectral bands and pixels to guide the reconstruction process. These two scanning mechanisms extract the HSI's local features while balancing the global perspective without any additional costs. Experimental results illustrate ASLE-SSM's superiority over existing state-of-the-art methods, with an inference speed 2.4 times faster than Transformer-based MST and saving 0.12 (M) of parameters, achieving the lowest computational cost and parameter count.
Related papers
- MambaIC: State Space Models for High-Performance Learned Image Compression [53.991726013454695]
A high-performance image compression algorithm is crucial for real-time information transmission across numerous fields.
Inspired by the effectiveness of state space models (SSMs) in capturing long-range dependencies, we leverage SSMs to address computational inefficiency in existing methods.
We propose an enhanced image compression approach through refined context modeling, which we term MambaIC.
arXiv Detail & Related papers (2025-03-16T11:32:34Z) - Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging [40.80197280147993]
We propose a Mamba-inspired Joint Unfolding Network (MiJUN) to overcome the inherent nonlinear and ill-posed characteristics of HSI reconstruction.
We introduce an accelerated unfolding network scheme, which reduces the reliance on initial optimization stages.
We refine the scanning strategy with Mamba by integrating the tensor mode-$k$ unfolding into the Mamba network.
arXiv Detail & Related papers (2025-01-02T13:56:23Z) - MAL: Cluster-Masked and Multi-Task Pretraining for Enhanced xLSTM Vision Performance [2.45239928345171]
We introduce MAL (Cluster-Masked and Multi-Task Pretraining for Enhanced xLSTM Vision Performance), a novel framework that enhances xLSTM's capabilities through innovative pretraining strategies.
We propose a cluster-masked masking method that significantly improves local feature capture and optimize image scanning efficiency.
Our universal encoder-decoder pretraining approach integrates multiple tasks, including image autoregression, depth estimation, and image segmentation, thereby enhancing the model's adaptability and robustness across diverse visual tasks.
arXiv Detail & Related papers (2024-12-14T07:58:24Z) - Coarse-Fine Spectral-Aware Deformable Convolution For Hyperspectral Image Reconstruction [15.537910100051866]
We study the inverse problem of Coded Aperture Snapshot Spectral Imaging (CASSI)
We propose Coarse-Fine Spectral-Aware Deformable Convolution Network (CFSDCN)
Our CFSDCN significantly outperforms previous state-of-the-art (SOTA) methods on both simulated and real HSI datasets.
arXiv Detail & Related papers (2024-06-18T15:15:12Z) - Scalable Visual State Space Model with Fractal Scanning [16.077348474371547]
State Space Models (SSMs) have emerged as efficient alternatives to Transformer models.
We propose using fractal scanning curves for patch serialization.
We validate our method in image classification, detection, and segmentation tasks.
arXiv Detail & Related papers (2024-05-23T12:12:11Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification [4.389334324926174]
This study introduces the innovative Mamba-in-Mamba (MiM) architecture for HSI classification, the first attempt of deploying State Space Model (SSM) in this task.
MiM model includes 1) A novel centralized Mamba-Cross-Scan (MCS) mechanism for transforming images into sequence-data, 2) A Tokenized Mamba (T-Mamba) encoder, and 3) A Weighted MCS Fusion (WMF) module.
Experimental results from three public HSI datasets demonstrate that our method outperforms existing baselines and state-of-the-art approaches.
arXiv Detail & Related papers (2024-05-20T13:19:02Z) - SSUMamba: Spatial-Spectral Selective State Space Model for Hyperspectral Image Denoising [13.1240990099267]
We introduce a memory-efficient spatial-spectralamba (SSUMamba) for HSI denoising.
Mamba is known for its remarkable long-range dependency modeling capabilities.
SSUMamba achieves superior denoising results with lower memory consumption per batch compared to transformer-based methods.
arXiv Detail & Related papers (2024-05-02T20:44:26Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
Most fusion methods solely focus on the fusion algorithm itself and overlook the degradation models.
We propose physics-inspired degradation models (PIDM) to model the degradation of LR-HSI and HR-MSI.
Our proposed PIDM can boost the fusion performance of existing fusion methods in practical scenarios.
arXiv Detail & Related papers (2024-02-04T09:07:28Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Unsupervised Hyperspectral and Multispectral Images Fusion Based on the
Cycle Consistency [21.233354336608205]
We propose an unsupervised HSI and MSI fusion model based on the cycle consistency, called CycFusion.
The CycFusion learns the domain transformation between low spatial resolution HSI (LrHSI) and high spatial resolution MSI (HrMSI)
Experiments conducted on several datasets show that our proposed model outperforms all compared unsupervised fusion methods.
arXiv Detail & Related papers (2023-07-07T06:47:15Z) - Exploring Effective Mask Sampling Modeling for Neural Image Compression [171.35596121939238]
Most existing neural image compression methods rely on side information from hyperprior or context models to eliminate spatial redundancy.
Inspired by the mask sampling modeling in recent self-supervised learning methods for natural language processing and high-level vision, we propose a novel pretraining strategy for neural image compression.
Our method achieves competitive performance with lower computational complexity compared to state-of-the-art image compression methods.
arXiv Detail & Related papers (2023-06-09T06:50:20Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
We propose a spectral enhanced rectangle Transformer to model the spatial and spectral correlation in hyperspectral images.
For the former, we exploit the rectangle self-attention horizontally and vertically to capture the non-local similarity in the spatial domain.
For the latter, we design a spectral enhancement module that is capable of extracting global underlying low-rank property of spatial-spectral cubes to suppress noise.
arXiv Detail & Related papers (2023-04-03T09:42:13Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z) - Calibrated Hyperspectral Image Reconstruction via Graph-based
Self-Tuning Network [40.71031760929464]
Hyperspectral imaging (HSI) has attracted increasing research attention, especially for the ones based on a coded snapshot spectral imaging (CASSI) system.
Existing deep HSI reconstruction models are generally trained on paired data to retrieve original signals upon 2D compressed measurements given by a particular optical hardware mask in CASSI.
This mask-specific training style will lead to a hardware miscalibration issue, which sets up barriers to deploying deep HSI models among different hardware and noisy environments.
We propose a novel Graph-based Self-Tuning ( GST) network to reason uncertainties adapting to varying spatial structures of masks among
arXiv Detail & Related papers (2021-12-31T09:39:13Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.