Deep Learning in Medical Image Classification from MRI-based Brain Tumor Images
- URL: http://arxiv.org/abs/2408.00636v1
- Date: Thu, 1 Aug 2024 15:20:20 GMT
- Title: Deep Learning in Medical Image Classification from MRI-based Brain Tumor Images
- Authors: Xiaoyi Liu, Zhuoyue Wang,
- Abstract summary: Brain tumors are among the deadliest diseases in the world. Magnetic Resonance Imaging (MRI) is one of the most effective ways to detect brain tumors.
Accurate detection of brain tumors based on MRI scans is critical, as it can potentially save many lives and facilitate better decision-making at the early stages of the disease.
- Score: 1.6442870218029526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain tumors are among the deadliest diseases in the world. Magnetic Resonance Imaging (MRI) is one of the most effective ways to detect brain tumors. Accurate detection of brain tumors based on MRI scans is critical, as it can potentially save many lives and facilitate better decision-making at the early stages of the disease. Within our paper, four different types of MRI-based images have been collected from the database: glioma tumor, no tumor, pituitary tumor, and meningioma tumor. Our study focuses on making predictions for brain tumor classification. Five models, including four pre-trained models (MobileNet, EfficientNet-B0, ResNet-18, and VGG16) and one new model, MobileNet-BT, have been proposed for this study.
Related papers
- Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
Brain tumor is a life-threatening problem and hampers the normal functioning of the human body.
The use of deep learning algorithms in medical imaging has resulted in significant improvements in the classification and diagnosis of brain tumors.
The objective of this project is to develop a predictive system for brain tumor detection using machine learning.
arXiv Detail & Related papers (2024-07-15T11:30:40Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation.
This paper made a progressive stride toward generalizable tumor synthesis by leveraging a critical observation.
We have ascertained that generative AI models, e.g., Diffusion Models, can create realistic tumors generalized to a range of organs even when trained on a limited number of tumor examples from only one organ.
arXiv Detail & Related papers (2024-02-29T18:57:39Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3D CNN-based models dominate the field of magnetic resonance image (MRI) analytics.
In this paper, four datasets of Alzheimer's and Parkinson's disease recognition are utilized in experiments.
In terms of efficiency, the video framework performs better than 3D-CNN models by 5% - 11% with 50% - 66% less trainable parameters.
arXiv Detail & Related papers (2023-02-24T15:26:31Z) - Convolutional XGBoost (C-XGBOOST) Model for Brain Tumor Detection [0.0]
This study proposes a model for the early detection of brain tumours using a combination of convolutional neural networks (CNNs) and extreme gradient boosting (XGBoost)
The proposed model, named C-XGBoost has a lower model complexity compared to purely CNNs, making it easier to train and less prone to overfitting.
It is also better able to handle imbalanced and unstructured data, which are common issues in real-world medical image classification tasks.
arXiv Detail & Related papers (2023-01-05T22:25:28Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Brain Tumors Classification for MR images based on Attention Guided Deep
Learning Model [3.6328238032703806]
We analyze the existing technology and propose an attention guided deep convolution neural network (CNN) model.
Our method can achieve the average accuracy of 99.18% under ten-fold cross-validation for identifying the presence or absence of tumor.
It can assist doctors in achieving efficient clinical diagnosis of brain tumors.
arXiv Detail & Related papers (2021-04-06T07:25:52Z) - Brain Tumor Classification Using Medial Residual Encoder Layers [9.038707616951795]
Cancer is the second leading cause of death worldwide, responsible for over 9.5 million deaths in 2018 alone.
Brain tumors count for one out of every four cancer deaths.
We propose a system based on deep learning, containing encoder blocks. These blocks are fed with post-max-pooling features as residual learning.
Experimental evaluations of this model on a dataset consisting of 3064 MR images show 95.98% accuracy, which is better than previous studies on this database.
arXiv Detail & Related papers (2020-11-01T21:19:38Z) - Multi-channel MRI Embedding: An EffectiveStrategy for Enhancement of
Human Brain WholeTumor Segmentation [2.869946954477617]
One of the most important tasks in medical image processing is the brain's whole tumor segmentation.
Brain tumors often can be malignant or benign, if they are detected at an early stage.
Our research introduces an efficient strategy called Multi-channel MRI embedding to improve the result of deep learning-based tumor segmentation.
arXiv Detail & Related papers (2020-09-13T23:44:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.