Brain Tumors Classification for MR images based on Attention Guided Deep
Learning Model
- URL: http://arxiv.org/abs/2104.02331v1
- Date: Tue, 6 Apr 2021 07:25:52 GMT
- Title: Brain Tumors Classification for MR images based on Attention Guided Deep
Learning Model
- Authors: Yuhao Zhang, Shuhang Wang, Haoxiang Wu, Kejia Hu, Shufan Ji
- Abstract summary: We analyze the existing technology and propose an attention guided deep convolution neural network (CNN) model.
Our method can achieve the average accuracy of 99.18% under ten-fold cross-validation for identifying the presence or absence of tumor.
It can assist doctors in achieving efficient clinical diagnosis of brain tumors.
- Score: 3.6328238032703806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the clinical diagnosis and treatment of brain tumors, manual image reading
consumes a lot of energy and time. In recent years, the automatic tumor
classification technology based on deep learning has entered people's field of
vision. Brain tumors can be divided into primary and secondary intracranial
tumors according to their source. However, to our best knowledge, most existing
research on brain tumors are limited to primary intracranial tumor images and
cannot classify the source of the tumor. In order to solve the task of tumor
source type classification, we analyze the existing technology and propose an
attention guided deep convolution neural network (CNN) model. Meanwhile, the
method proposed in this paper also effectively improves the accuracy of
classifying the presence or absence of tumor. For the brain MR dataset, our
method can achieve the average accuracy of 99.18% under ten-fold
cross-validation for identifying the presence or absence of tumor, and 83.38%
for classifying the source of tumor. Experimental results show that our method
is consistent with the method of medical experts. It can assist doctors in
achieving efficient clinical diagnosis of brain tumors.
Related papers
- Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
Brain tumors pose a serious health threat due to their rapid growth and potential for metastasis.
This study aims to improve the efficiency and accuracy of brain tumor classification.
Our approach combines state-of-the-art deep learning algorithms, including the Vision Transformer (ViT), Capsule Neural Network (CapsNet), and convolutional neural networks (CNNs) such as ResNet-152 and VGG16.
arXiv Detail & Related papers (2024-10-31T07:28:06Z) - Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
Brain tumor is a life-threatening problem and hampers the normal functioning of the human body.
The use of deep learning algorithms in medical imaging has resulted in significant improvements in the classification and diagnosis of brain tumors.
The objective of this project is to develop a predictive system for brain tumor detection using machine learning.
arXiv Detail & Related papers (2024-07-15T11:30:40Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
Manual segmentation of brain tumors from 3D MRI volumes is a time-consuming task.
Our model, QuickTumorNet, demonstrated fast, reliable, and accurate brain tumor segmentation.
arXiv Detail & Related papers (2020-12-22T23:16:43Z) - Brain Tumor Classification Using Medial Residual Encoder Layers [9.038707616951795]
Cancer is the second leading cause of death worldwide, responsible for over 9.5 million deaths in 2018 alone.
Brain tumors count for one out of every four cancer deaths.
We propose a system based on deep learning, containing encoder blocks. These blocks are fed with post-max-pooling features as residual learning.
Experimental evaluations of this model on a dataset consisting of 3064 MR images show 95.98% accuracy, which is better than previous studies on this database.
arXiv Detail & Related papers (2020-11-01T21:19:38Z) - Deep Convolutional Neural Networks Model-based Brain Tumor Detection in
Brain MRI Images [0.0]
Our work involves implementing a deep convolutional neural network (DCNN) for diagnosing brain tumors from MR images.
Our model can single out the MR images with tumors with an overall accuracy of 96%.
arXiv Detail & Related papers (2020-10-03T07:42:17Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.