Enhancing Multistep Prediction of Multivariate Market Indices Using Weighted Optical Reservoir Computing
- URL: http://arxiv.org/abs/2408.00652v1
- Date: Thu, 1 Aug 2024 15:41:08 GMT
- Title: Enhancing Multistep Prediction of Multivariate Market Indices Using Weighted Optical Reservoir Computing
- Authors: Fang Wang, Ting Bu, Yuping Huang,
- Abstract summary: We propose and experimentally demonstrate an innovative stock index prediction method using a weighted optical reservoir computing system.
We construct fundamental market data combined with macroeconomic data and technical indicators to capture the broader behavior of the stock market.
- Score: 3.4442963880376203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose and experimentally demonstrate an innovative stock index prediction method using a weighted optical reservoir computing system. We construct fundamental market data combined with macroeconomic data and technical indicators to capture the broader behavior of the stock market. Our approach shows significant higher performance than state-of-the-art methods such as linear regression, decision trees, and neural network architectures including long short-term memory. It captures well the market's high volatility and nonlinear behaviors despite limited data, demonstrating great potential for real-time, parallel, multi-dimensional data processing and predictions.
Related papers
- MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU [15.232546605091818]
This paper proposes a stock prediction model, MCI-GRU, based on a multi-head cross-attention mechanism and an improved GRU.
Experiments on four main stock markets show that the proposed method outperforms SOTA techniques across multiple metrics.
arXiv Detail & Related papers (2024-09-25T14:37:49Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
This paper propose a comparative study on hybrid machine learning algorithms and leverage on enhancing model interpretability.
For the interpretability, we carry out a systematic overview on the preprocessing techniques of time-series statistics, including decomposition, auto-correlational function, exponential triple forecasting, which aim to excavate latent relations and complex patterns appeared in the financial time-series forecasting.
arXiv Detail & Related papers (2023-12-31T16:38:32Z) - ALERTA-Net: A Temporal Distance-Aware Recurrent Networks for Stock
Movement and Volatility Prediction [20.574163667057476]
We harness the power of social media data, a rich source of public sentiment, to enhance the accuracy of stock market predictions.
We pioneer an approach that integrates sentiment analysis, macroeconomic indicators, search engine data, and historical prices within a multi-attention deep learning model.
We showcase the state-of-the-art performance of our proposed model using a dataset, specifically curated by us, for predicting stock market movements and volatility.
arXiv Detail & Related papers (2023-10-28T13:31:39Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - ARISE: ApeRIodic SEmi-parametric Process for Efficient Markets without
Periodogram and Gaussianity Assumptions [91.3755431537592]
We present the ApeRI-miodic (ARISE) process for investigating efficient markets.
The ARISE process is formulated as an infinite-sum of some known processes and employs the aperiodic spectrum estimation.
In practice, we apply the ARISE function to identify the efficiency of real-world markets.
arXiv Detail & Related papers (2021-11-08T03:36:06Z) - A Scalable Inference Method For Large Dynamic Economic Systems [19.757929782329892]
We present a novel Variational Bayesian Inference approach to incorporate a time-varying parameter auto-regressive model.
Our model is applied to a large blockchain dataset containing prices, transactions of individual actors, analyzing transactional flows and price movements.
We further improve the simple state-space modelling by introducing non-linearities in the forward model with the help of machine learning architectures.
arXiv Detail & Related papers (2021-10-27T10:52:17Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.