MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU
- URL: http://arxiv.org/abs/2410.20679v1
- Date: Wed, 25 Sep 2024 14:37:49 GMT
- Title: MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU
- Authors: Peng Zhu, Yuante Li, Yifan Hu, Sheng Xiang, Qinyuan Liu, Dawei Cheng, Yuqi Liang,
- Abstract summary: This paper proposes a stock prediction model, MCI-GRU, based on a multi-head cross-attention mechanism and an improved GRU.
Experiments on four main stock markets show that the proposed method outperforms SOTA techniques across multiple metrics.
- Score: 15.232546605091818
- License:
- Abstract: As financial markets grow increasingly complex in the big data era, accurate stock prediction has become more critical. Traditional time series models, such as GRUs, have been widely used but often struggle to capture the intricate nonlinear dynamics of markets, particularly in the flexible selection and effective utilization of key historical information. Recently, methods like Graph Neural Networks and Reinforcement Learning have shown promise in stock prediction but require high data quality and quantity, and they tend to exhibit instability when dealing with data sparsity and noise. Moreover, the training and inference processes for these models are typically complex and computationally expensive, limiting their broad deployment in practical applications. Existing approaches also generally struggle to capture unobservable latent market states effectively, such as market sentiment and expectations, microstructural factors, and participant behavior patterns, leading to an inadequate understanding of market dynamics and subsequently impact prediction accuracy. To address these challenges, this paper proposes a stock prediction model, MCI-GRU, based on a multi-head cross-attention mechanism and an improved GRU. First, we enhance the GRU model by replacing the reset gate with an attention mechanism, thereby increasing the model's flexibility in selecting and utilizing historical information. Second, we design a multi-head cross-attention mechanism for learning unobservable latent market state representations, which are further enriched through interactions with both temporal features and cross-sectional features. Finally, extensive experiments on four main stock markets show that the proposed method outperforms SOTA techniques across multiple metrics. Additionally, its successful application in real-world fund management operations confirms its effectiveness and practicality.
Related papers
- Breaking Down Financial News Impact: A Novel AI Approach with Geometric Hypergraphs [9.618393813409266]
In the fast-paced and volatile financial markets, accurately predicting stock movements based on financial news is critical for investors and analysts.
Traditional models often struggle to capture the intricate and dynamic relationships between news events and market reactions.
This paper introduces a novel approach leveraging Explainable Artificial Intelligence (XAI) to analyse the impact of financial news on market behaviours.
arXiv Detail & Related papers (2024-08-31T12:18:45Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
patio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management.
We introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods.
arXiv Detail & Related papers (2024-08-26T16:11:53Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models [1.9662978733004601]
We develop an architecture for providing better market predictions conditioned on the historical financial indicators and inter-stock relations.
We also provide a novel deterministic architecture MaTCHS which uses Masked Transformer(RTM) to exploit inter-stock relations along with historical stock features.
arXiv Detail & Related papers (2024-03-21T01:20:32Z) - Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks [3.7608255115473592]
This paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network.
Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and abrupt events.
Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets.
arXiv Detail & Related papers (2023-11-23T04:33:47Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.