Learning in Multi-Objective Public Goods Games with Non-Linear Utilities
- URL: http://arxiv.org/abs/2408.00682v1
- Date: Thu, 1 Aug 2024 16:24:37 GMT
- Title: Learning in Multi-Objective Public Goods Games with Non-Linear Utilities
- Authors: Nicole Orzan, Erman Acar, Davide Grossi, Patrick Mannion, Roxana Rădulescu,
- Abstract summary: We study learning in a novel multi-objective version of the Public Goods Game where agents have different risk preferences.
We study the interplay between such preference modelling and environmental uncertainty on the incentive alignment level in the game.
- Score: 8.243788683895376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Addressing the question of how to achieve optimal decision-making under risk and uncertainty is crucial for enhancing the capabilities of artificial agents that collaborate with or support humans. In this work, we address this question in the context of Public Goods Games. We study learning in a novel multi-objective version of the Public Goods Game where agents have different risk preferences, by means of multi-objective reinforcement learning. We introduce a parametric non-linear utility function to model risk preferences at the level of individual agents, over the collective and individual reward components of the game. We study the interplay between such preference modelling and environmental uncertainty on the incentive alignment level in the game. We demonstrate how different combinations of individual preferences and environmental uncertainties sustain the emergence of cooperative patterns in non-cooperative environments (i.e., where competitive strategies are dominant), while others sustain competitive patterns in cooperative environments (i.e., where cooperative strategies are dominant).
Related papers
- Learning to Balance Altruism and Self-interest Based on Empathy in Mixed-Motive Games [47.8980880888222]
Multi-agent scenarios often involve mixed motives, demanding altruistic agents capable of self-protection against potential exploitation.
We propose LASE Learning to balance Altruism and Self-interest based on Empathy.
LASE allocates a portion of its rewards to co-players as gifts, with this allocation adapting dynamically based on the social relationship.
arXiv Detail & Related papers (2024-10-10T12:30:56Z) - A Minimaximalist Approach to Reinforcement Learning from Human Feedback [49.45285664482369]
We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback.
Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training.
We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches.
arXiv Detail & Related papers (2024-01-08T17:55:02Z) - Tackling Cooperative Incompatibility for Zero-Shot Human-AI Coordination [36.33334853998621]
We introduce the Cooperative Open-ended LEarning (COLE) framework to solve cooperative incompatibility in learning.
COLE formulates open-ended objectives in cooperative games with two players using perspectives of graph theory to evaluate and pinpoint the cooperative capacity of each strategy.
We show that COLE could effectively overcome the cooperative incompatibility from theoretical and empirical analysis.
arXiv Detail & Related papers (2023-06-05T16:51:38Z) - Learning Diverse Risk Preferences in Population-based Self-play [23.07952140353786]
Current self-play algorithms optimize the agent to maximize expected win-rates against its current or historical copies.
We introduce diversity from the perspective that agents could have diverse risk preferences in the face of uncertainty.
We show that our method achieves comparable or superior performance in competitive games.
arXiv Detail & Related papers (2023-05-19T06:56:02Z) - Efficiently Computing Nash Equilibria in Adversarial Team Markov Games [19.717850955051837]
We introduce a class of games in which a team identically players is competing against an adversarial player.
This setting allows for a unifying treatment of zero-sum Markov games potential games.
Our main contribution is the first algorithm for computing stationary $epsilon$-approximate Nash equilibria in adversarial team Markov games.
arXiv Detail & Related papers (2022-08-03T16:41:01Z) - Conditional Imitation Learning for Multi-Agent Games [89.897635970366]
We study the problem of conditional multi-agent imitation learning, where we have access to joint trajectory demonstrations at training time.
We propose a novel approach to address the difficulties of scalability and data scarcity.
Our model learns a low-rank subspace over ego and partner agent strategies, then infers and adapts to a new partner strategy by interpolating in the subspace.
arXiv Detail & Related papers (2022-01-05T04:40:13Z) - Pick Your Battles: Interaction Graphs as Population-Level Objectives for
Strategic Diversity [49.68758494467258]
We study how to construct diverse populations of agents by carefully structuring how individuals within a population interact.
Our approach is based on interaction graphs, which control the flow of information between agents during training.
We provide evidence for the importance of diversity in multi-agent training and analyse the effect of applying different interaction graphs on the training trajectories, diversity and performance of populations in a range of games.
arXiv Detail & Related papers (2021-10-08T11:29:52Z) - Policy Fusion for Adaptive and Customizable Reinforcement Learning
Agents [137.86426963572214]
We show how to combine distinct behavioral policies to obtain a meaningful "fusion" policy.
We propose four different policy fusion methods for combining pre-trained policies.
We provide several practical examples and use-cases for how these methods are indeed useful for video game production and designers.
arXiv Detail & Related papers (2021-04-21T16:08:44Z) - Opponent Learning Awareness and Modelling in Multi-Objective Normal Form
Games [5.0238343960165155]
It is essential for an agent to learn about the behaviour of other agents in the system.
We present the first study of the effects of such opponent modelling on multi-objective multi-agent interactions with non-linear utilities.
arXiv Detail & Related papers (2020-11-14T12:35:32Z) - Moody Learners -- Explaining Competitive Behaviour of Reinforcement
Learning Agents [65.2200847818153]
In a competitive scenario, the agent does not only have a dynamic environment but also is directly affected by the opponents' actions.
Observing the Q-values of the agent is usually a way of explaining its behavior, however, do not show the temporal-relation between the selected actions.
arXiv Detail & Related papers (2020-07-30T11:30:42Z) - Natural Emergence of Heterogeneous Strategies in Artificially
Intelligent Competitive Teams [0.0]
We develop a competitive multi agent environment called FortAttack in which two teams compete against each other.
We observe a natural emergence of heterogeneous behavior amongst homogeneous agents when such behavior can lead to the team's success.
We propose ensemble training, in which we utilize the evolved opponent strategies to train a single policy for friendly agents.
arXiv Detail & Related papers (2020-07-06T22:35:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.