Learning to Balance Altruism and Self-interest Based on Empathy in Mixed-Motive Games
- URL: http://arxiv.org/abs/2410.07863v1
- Date: Thu, 10 Oct 2024 12:30:56 GMT
- Title: Learning to Balance Altruism and Self-interest Based on Empathy in Mixed-Motive Games
- Authors: Fanqi Kong, Yizhe Huang, Song-Chun Zhu, Siyuan Qi, Xue Feng,
- Abstract summary: Multi-agent scenarios often involve mixed motives, demanding altruistic agents capable of self-protection against potential exploitation.
We propose LASE Learning to balance Altruism and Self-interest based on Empathy.
LASE allocates a portion of its rewards to co-players as gifts, with this allocation adapting dynamically based on the social relationship.
- Score: 47.8980880888222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world multi-agent scenarios often involve mixed motives, demanding altruistic agents capable of self-protection against potential exploitation. However, existing approaches often struggle to achieve both objectives. In this paper, based on that empathic responses are modulated by inferred social relationships between agents, we propose LASE Learning to balance Altruism and Self-interest based on Empathy), a distributed multi-agent reinforcement learning algorithm that fosters altruistic cooperation through gifting while avoiding exploitation by other agents in mixed-motive games. LASE allocates a portion of its rewards to co-players as gifts, with this allocation adapting dynamically based on the social relationship -- a metric evaluating the friendliness of co-players estimated by counterfactual reasoning. In particular, social relationship measures each co-player by comparing the estimated $Q$-function of current joint action to a counterfactual baseline which marginalizes the co-player's action, with its action distribution inferred by a perspective-taking module. Comprehensive experiments are performed in spatially and temporally extended mixed-motive games, demonstrating LASE's ability to promote group collaboration without compromising fairness and its capacity to adapt policies to various types of interactive co-players.
Related papers
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning.
We present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning.
We derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
arXiv Detail & Related papers (2024-10-24T10:48:42Z) - Reciprocal Reward Influence Encourages Cooperation From Self-Interested Agents [2.1301560294088318]
Cooperation between self-interested individuals is a widespread phenomenon in the natural world, but remains elusive in interactions between artificially intelligent agents.
We introduce Reciprocators, reinforcement learning agents which are intrinsically motivated to reciprocate the influence of opponents' actions on their returns.
We show that Reciprocators can be used to promote cooperation in temporally extended social dilemmas during simultaneous learning.
arXiv Detail & Related papers (2024-06-03T06:07:27Z) - Enhancing Cooperation through Selective Interaction and Long-term Experiences in Multi-Agent Reinforcement Learning [10.932974027102619]
This study introduces a computational framework based on multi-agent reinforcement learning in the spatial Prisoner's Dilemma game.
By modelling each agent using two distinct Q-networks, we disentangle the coevolutionary dynamics between cooperation and interaction.
arXiv Detail & Related papers (2024-05-04T12:42:55Z) - Emergent Cooperation under Uncertain Incentive Alignment [7.906156032228933]
We study how cooperation can arise among reinforcement learning agents in scenarios characterised by infrequent encounters.
We study the effects of mechanisms, such as reputation and intrinsic rewards, that have been proposed in the literature to foster cooperation in mixed-motives environments.
arXiv Detail & Related papers (2024-01-23T10:55:54Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Learning Roles with Emergent Social Value Orientations [49.16026283952117]
This paper introduces the typical "division of labor or roles" mechanism in human society.
We provide a promising solution for intertemporal social dilemmas (ISD) with social value orientations (SVO)
A novel learning framework, called Learning Roles with Emergent SVOs (RESVO), is proposed to transform the learning of roles into the social value orientation emergence.
arXiv Detail & Related papers (2023-01-31T17:54:09Z) - Rethinking Trajectory Prediction via "Team Game" [118.59480535826094]
We present a novel formulation for multi-agent trajectory prediction, which explicitly introduces the concept of interactive group consensus.
On two multi-agent settings, i.e. team sports and pedestrians, the proposed framework consistently achieves superior performance compared to existing methods.
arXiv Detail & Related papers (2022-10-17T07:16:44Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
This work proposes a novel reinforcement learning mechanism based on the social impact of rivalry behavior.
Our proposed model aggregates objective and social perception mechanisms to derive a rivalry score that is used to modulate the learning of artificial agents.
arXiv Detail & Related papers (2022-08-22T14:06:06Z) - Balancing Rational and Other-Regarding Preferences in
Cooperative-Competitive Environments [4.705291741591329]
Mixed environments are notorious for the conflicts of selfish and social interests.
We propose BAROCCO to balance individual and social incentives.
Our meta-algorithm is compatible with both Q-learning and Actor-Critic frameworks.
arXiv Detail & Related papers (2021-02-24T14:35:32Z) - Cooperative and Competitive Biases for Multi-Agent Reinforcement
Learning [12.676356746752893]
Training a multi-agent reinforcement learning (MARL) algorithm is more challenging than training a single-agent reinforcement learning algorithm.
We propose an algorithm that boosts MARL training using the biased action information of other agents based on a friend-or-foe concept.
We empirically demonstrate that our algorithm outperforms existing algorithms in various mixed cooperative-competitive environments.
arXiv Detail & Related papers (2021-01-18T05:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.