Pathway to Secure and Trustworthy 6G for LLMs: Attacks, Defense, and Opportunities
- URL: http://arxiv.org/abs/2408.00722v1
- Date: Thu, 1 Aug 2024 17:15:13 GMT
- Title: Pathway to Secure and Trustworthy 6G for LLMs: Attacks, Defense, and Opportunities
- Authors: Sunder Ali Khowaja, Parus Khuwaja, Kapal Dev, Hussam Al Hamadi, Engin Zeydan,
- Abstract summary: We explore the security vulnerabilities associated with fine-tuning large language models (LLMs) in 6G networks.
We show that the membership inference attacks are effective for any downstream task, which can lead to a personal data breach when using LLM as a service.
- Score: 11.511012020557326
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, large language models (LLMs) have been gaining a lot of interest due to their adaptability and extensibility in emerging applications, including communication networks. It is anticipated that 6G mobile edge computing networks will be able to support LLMs as a service, as they provide ultra reliable low-latency communications and closed loop massive connectivity. However, LLMs are vulnerable to data and model privacy issues that affect the trustworthiness of LLMs to be deployed for user-based services. In this paper, we explore the security vulnerabilities associated with fine-tuning LLMs in 6G networks, in particular the membership inference attack. We define the characteristics of an attack network that can perform a membership inference attack if the attacker has access to the fine-tuned model for the downstream task. We show that the membership inference attacks are effective for any downstream task, which can lead to a personal data breach when using LLM as a service. The experimental results show that the attack success rate of maximum 92% can be achieved on named entity recognition task. Based on the experimental analysis, we discuss possible defense mechanisms and present possible research directions to make the LLMs more trustworthy in the context of 6G networks.
Related papers
- Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs)
In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents.
We conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities.
arXiv Detail & Related papers (2025-02-12T17:19:36Z) - Emerging Security Challenges of Large Language Models [6.151633954305939]
Large language models (LLMs) have achieved record adoption in a short period of time across many different sectors.
They are open-ended models trained on diverse data without being tailored for specific downstream tasks.
Traditional Machine Learning (ML) models are vulnerable to adversarial attacks.
arXiv Detail & Related papers (2024-12-23T14:36:37Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
AI agents, powered by large language models (LLMs), have transformed human-computer interactions by enabling seamless, natural, and context-aware communication.
This paper investigates a critical vulnerability: adversarial attacks targeting the LLM core within AI agents.
arXiv Detail & Related papers (2024-12-05T18:38:30Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Chain-of-Scrutiny: Detecting Backdoor Attacks for Large Language Models [35.77228114378362]
Large Language Models (LLMs) generate malicious outputs when inputs contain specific "triggers" set by attackers.
Traditional defense strategies are impractical for API-accessible LLMs due to limited model access, high computational costs, and data requirements.
We propose Chain-of-Scrutiny (CoS) which leverages LLMs' unique reasoning abilities to mitigate backdoor attacks.
arXiv Detail & Related papers (2024-06-10T00:53:25Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.
Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.
We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly [21.536079040559517]
Large Language Models (LLMs) have revolutionized natural language understanding and generation.
This paper explores the intersection of LLMs with security and privacy.
arXiv Detail & Related papers (2023-12-04T16:25:18Z) - MART: Improving LLM Safety with Multi-round Automatic Red-Teaming [72.2127916030909]
We propose a Multi-round Automatic Red-Teaming (MART) method, which incorporates both automatic adversarial prompt writing and safe response generation.
On adversarial prompt benchmarks, the violation rate of an LLM with limited safety alignment reduces up to 84.7% after 4 rounds of MART.
Notably, model helpfulness on non-adversarial prompts remains stable throughout iterations, indicating the target LLM maintains strong performance on instruction following.
arXiv Detail & Related papers (2023-11-13T19:13:29Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content.
We propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts.
arXiv Detail & Related papers (2023-10-19T06:15:05Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - A Comprehensive Overview of Backdoor Attacks in Large Language Models within Communication Networks [28.1095109118807]
Large Language Models (LLMs) are poised to offer efficient and intelligent services for future mobile communication networks.
LLMs may be exposed to maliciously manipulated training data and processing, providing an opportunity for attackers to embed a hidden backdoor into the model.
Backdoor attacks are particularly concerning within communication networks where reliability and security are paramount.
arXiv Detail & Related papers (2023-08-28T07:31:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.