Emerging Security Challenges of Large Language Models
- URL: http://arxiv.org/abs/2412.17614v1
- Date: Mon, 23 Dec 2024 14:36:37 GMT
- Title: Emerging Security Challenges of Large Language Models
- Authors: Herve Debar, Sven Dietrich, Pavel Laskov, Emil C. Lupu, Eirini Ntoutsi,
- Abstract summary: Large language models (LLMs) have achieved record adoption in a short period of time across many different sectors.
They are open-ended models trained on diverse data without being tailored for specific downstream tasks.
Traditional Machine Learning (ML) models are vulnerable to adversarial attacks.
- Score: 6.151633954305939
- License:
- Abstract: Large language models (LLMs) have achieved record adoption in a short period of time across many different sectors including high importance areas such as education [4] and healthcare [23]. LLMs are open-ended models trained on diverse data without being tailored for specific downstream tasks, enabling broad applicability across various domains. They are commonly used for text generation, but also widely used to assist with code generation [3], and even analysis of security information, as Microsoft Security Copilot demonstrates [18]. Traditional Machine Learning (ML) models are vulnerable to adversarial attacks [9]. So the concerns on the potential security implications of such wide scale adoption of LLMs have led to the creation of this working group on the security of LLMs. During the Dagstuhl seminar on "Network Attack Detection and Defense - AI-Powered Threats and Responses", the working group discussions focused on the vulnerability of LLMs to adversarial attacks, rather than their potential use in generating malware or enabling cyberattacks. Although we note the potential threat represented by the latter, the role of the LLMs in such uses is mostly as an accelerator for development, similar to what it is in benign use. To make the analysis more specific, the working group employed ChatGPT as a concrete example of an LLM and addressed the following points, which also form the structure of this report: 1. How do LLMs differ in vulnerabilities from traditional ML models? 2. What are the attack objectives in LLMs? 3. How complex it is to assess the risks posed by the vulnerabilities of LLMs? 4. What is the supply chain in LLMs, how data flow in and out of systems and what are the security implications? We conclude with an overview of open challenges and outlook.
Related papers
- Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs)
In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents.
We conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities.
arXiv Detail & Related papers (2025-02-12T17:19:36Z) - Large Language Models and Code Security: A Systematic Literature Review [0.0]
Large Language Models (LLMs) have emerged as powerful tools for automating various programming tasks.
LLMs could introduce vulnerabilities unbeknown to the programmer.
When analyzing code, they could miss clear vulnerabilities or signal nonexistent ones.
arXiv Detail & Related papers (2024-12-19T16:20:22Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
Large language models (LLMs) are increasingly vulnerable to emerging jailbreak attacks.
This vulnerability poses significant risks to the real-world applications.
We propose a novel defensive paradigm called GuidelineLLM.
arXiv Detail & Related papers (2024-12-10T12:42:33Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - Can LLMs be Fooled? Investigating Vulnerabilities in LLMs [4.927763944523323]
The advent of Large Language Models (LLMs) has garnered significant popularity and wielded immense power across various domains within Natural Language Processing (NLP)
This paper will synthesize the findings from each vulnerability section and propose new directions of research and development.
By understanding the focal points of current vulnerabilities, we can better anticipate and mitigate future risks.
arXiv Detail & Related papers (2024-07-30T04:08:00Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - garak: A Framework for Security Probing Large Language Models [16.305837349514505]
garak is a framework which can be used to discover and identify vulnerabilities in a target Large Language Models (LLMs)
The outputs of the framework describe a target model's weaknesses, contribute to an informed discussion of what composes vulnerabilities in unique contexts.
arXiv Detail & Related papers (2024-06-16T18:18:43Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
We conduct a comprehensive review of the literature on the application of Large Language Models in cybersecurity (LLM4Security)
We observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection.
Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training.
arXiv Detail & Related papers (2024-05-08T02:09:17Z) - A New Era in LLM Security: Exploring Security Concerns in Real-World
LLM-based Systems [47.18371401090435]
We analyze the security of Large Language Model (LLM) systems, instead of focusing on the individual LLMs.
We propose a multi-layer and multi-step approach and apply it to the state-of-art OpenAI GPT4.
We found that although the OpenAI GPT4 has designed numerous safety constraints to improve its safety features, these safety constraints are still vulnerable to attackers.
arXiv Detail & Related papers (2024-02-28T19:00:12Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.