Improving Air Mobility for Pre-Disaster Planning with Neural Network Accelerated Genetic Algorithm
- URL: http://arxiv.org/abs/2408.00790v1
- Date: Wed, 17 Jul 2024 15:59:41 GMT
- Title: Improving Air Mobility for Pre-Disaster Planning with Neural Network Accelerated Genetic Algorithm
- Authors: Kamal Acharya, Alvaro Velasquez, Yongxin Liu, Dahai Liu, Liang Sun, Houbing Song,
- Abstract summary: Weather disaster related emergency operations pose a great challenge to air mobility in both aircraft and airport operations.
We propose an optimized framework for adjusting airport operational schedules for such pre-disaster scenarios.
We then propose a novel Neural Network (NN) accelerated Genetic Algorithm(GA) for evacuation planning.
- Score: 26.061782031525652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weather disaster related emergency operations pose a great challenge to air mobility in both aircraft and airport operations, especially when the impact is gradually approaching. We propose an optimized framework for adjusting airport operational schedules for such pre-disaster scenarios. We first, aggregate operational data from multiple airports and then determine the optimal count of evacuation flights to maximize the impacted airport's outgoing capacity without impeding regular air traffic. We then propose a novel Neural Network (NN) accelerated Genetic Algorithm(GA) for evacuation planning. Our experiments show that integration yielded comparable results but with smaller computational overhead. We find that the utilization of a NN enhances the efficiency of a GA, facilitating more rapid convergence even when operating with a reduced population size. This effectiveness persists even when the model is trained on data from airports different from those under test.
Related papers
- Airport take-off and landing optimization through genetic algorithms [55.2480439325792]
This research addresses the crucial issue of pollution from aircraft operations, focusing on optimizing both gate allocation and runway scheduling simultaneously.
The study presents an innovative genetic algorithm-based method for minimizing pollution from fuel combustion during aircraft take-off and landing at airports.
arXiv Detail & Related papers (2024-02-29T14:53:55Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
The unprecedented increase of commercial airlines and private jets over the past ten years presents a challenge for air traffic control.
Precise flight trajectory prediction is of great significance in air transportation management, which contributes to the decision-making for safe and orderly flights.
We propose a phased flight trajectory prediction framework that can outperform state-of-the-art methods for flight trajectory prediction for large passenger/transport airplanes.
arXiv Detail & Related papers (2022-03-17T02:16:02Z) - Wireless-Enabled Asynchronous Federated Fourier Neural Network for
Turbulence Prediction in Urban Air Mobility (UAM) [101.80862265018033]
Urban air mobility (UAM) has been proposed in which vertical takeoff and landing (VTOL) aircraft are used to provide a ride-hailing service.
In UAM, aircraft can operate in designated air spaces known as corridors, that link the aerodromes.
A reliable communication network between GBSs and aircraft enables UAM to adequately utilize the airspace.
arXiv Detail & Related papers (2021-12-26T14:41:52Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
We invoke deep learning (DL) to assist routing in aeronautical ad-hoc networks (AANETs)
A deep neural network (DNN) is conceived for mapping the local geographic information observed by the forwarding node into the information required for determining the optimal next hop.
We extend the DL-aided routing algorithm to a multi-objective scenario, where we aim for simultaneously minimizing the delay, maximizing the path capacity, and maximizing the path lifetime.
arXiv Detail & Related papers (2021-10-28T14:18:22Z) - NASOA: Towards Faster Task-oriented Online Fine-tuning with a Zoo of
Models [90.6485663020735]
Fine-tuning from pre-trained ImageNet models has been a simple, effective, and popular approach for various computer vision tasks.
We propose a joint Neural Architecture Search and Online Adaption framework named NASOA towards a faster task-oriented fine-tuning.
arXiv Detail & Related papers (2021-08-07T12:03:14Z) - A Simplified Framework for Air Route Clustering Based on ADS-B Data [0.0]
This paper presents a framework that can support to detect the typical air routes between airports based on ADS-B data.
As a matter of fact, our framework can be taken into account to reduce practically the computational cost for air flow optimization.
arXiv Detail & Related papers (2021-07-07T08:55:31Z) - Spatio-Temporal Data Mining for Aviation Delay Prediction [15.621546618044173]
We present a novel aviation delay prediction system based on stacked Long Short-Term Memory (LSTM) networks for commercial flights.
The system learns from historical trajectories from automatic dependent surveillance-broadcast (ADS-B) messages.
Compared with previous schemes, our approach is demonstrated to be more robust and accurate for large hub airports.
arXiv Detail & Related papers (2021-03-20T18:37:06Z) - Flight Time Prediction for Fuel Loading Decisions with a Deep Learning
Approach [3.285168337194676]
Airlines are constantly seeking new technologies and optimizing flight operations to reduce fuel consumption.
Excess fuel is loaded by dispatchers and (or) pilots to handle fuel consumption uncertainties.
We develop a novel spatial weighted recurrent neural network model to provide better flight time predictions.
arXiv Detail & Related papers (2020-05-12T11:05:42Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations.
A population density map, obtained on-the-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building.
arXiv Detail & Related papers (2020-04-25T22:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.