A Scalable and Generalized Deep Learning Framework for Anomaly Detection in Surveillance Videos
- URL: http://arxiv.org/abs/2408.00792v1
- Date: Wed, 17 Jul 2024 22:41:12 GMT
- Title: A Scalable and Generalized Deep Learning Framework for Anomaly Detection in Surveillance Videos
- Authors: Sabah Abdulazeez Jebur, Khalid A. Hussein, Haider Kadhim Hoomod, Laith Alzubaidi, Ahmed Ali Saihood, YuanTong Gu,
- Abstract summary: Anomaly detection in videos is challenging due to the complexity, noise, and diverse nature of activities such as violence, shoplifting, and vandalism.
Existing approaches have struggled to apply deep learning models across different anomaly tasks without extensive retraining.
A new DL framework is introduced in this study, consisting of three key components: transfer learning to enhance feature generalization, model fusion to improve feature representation, and multi-task classification.
Empirical evaluations demonstrate the framework's effectiveness, achieving an accuracy of 97.99% on the RLVS dataset (violence detection), 83.59% on the UCF dataset (shoplifting detection
- Score: 0.47279903800557493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in videos is challenging due to the complexity, noise, and diverse nature of activities such as violence, shoplifting, and vandalism. While deep learning (DL) has shown excellent performance in this area, existing approaches have struggled to apply DL models across different anomaly tasks without extensive retraining. This repeated retraining is time-consuming, computationally intensive, and unfair. To address this limitation, a new DL framework is introduced in this study, consisting of three key components: transfer learning to enhance feature generalization, model fusion to improve feature representation, and multi-task classification to generalize the classifier across multiple tasks without training from scratch when new task is introduced. The framework's main advantage is its ability to generalize without requiring retraining from scratch for each new task. Empirical evaluations demonstrate the framework's effectiveness, achieving an accuracy of 97.99% on the RLVS dataset (violence detection), 83.59% on the UCF dataset (shoplifting detection), and 88.37% across both datasets using a single classifier without retraining. Additionally, when tested on an unseen dataset, the framework achieved an accuracy of 87.25%. The study also utilizes two explainability tools to identify potential biases, ensuring robustness and fairness. This research represents the first successful resolution of the generalization issue in anomaly detection, marking a significant advancement in the field.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization [23.78498670529746]
We introduce a regularization technique to ensure that the magnitudes of the extracted features are evenly distributed.
Despite its apparent simplicity, our approach has demonstrated significant performance improvements across various fine-grained visual recognition datasets.
arXiv Detail & Related papers (2024-09-03T07:32:46Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Deepfake Detection via Joint Unsupervised Reconstruction and Supervised
Classification [25.84902508816679]
We introduce a novel approach for deepfake detection, which considers the reconstruction and classification tasks simultaneously.
This method shares the information learned by one task with the other, which focuses on a different aspect other existing works rarely consider.
Our method achieves state-of-the-art performance on three commonly-used datasets.
arXiv Detail & Related papers (2022-11-24T05:44:26Z) - X-Learner: Learning Cross Sources and Tasks for Universal Visual
Representation [71.51719469058666]
We propose a representation learning framework called X-Learner.
X-Learner learns the universal feature of multiple vision tasks supervised by various sources.
X-Learner achieves strong performance on different tasks without extra annotations, modalities and computational costs.
arXiv Detail & Related papers (2022-03-16T17:23:26Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Towards Generalized and Incremental Few-Shot Object Detection [9.033533653482529]
A novel Incremental Few-Shot Object Detection (iFSOD) method is proposed to enable the effective continual learning from few-shot samples.
Specifically, a Double-Branch Framework (DBF) is proposed to decouple the feature representation of base and novel (few-shot) class.
We conduct experiments on both Pascal VOC and MS-COCO, which demonstrate that our method can effectively solve the problem of incremental few-shot detection.
arXiv Detail & Related papers (2021-09-23T12:38:09Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - End-to-end training of a two-stage neural network for defect detection [4.38301148531795]
gradient-based, two-stage neural network has shown excellent results in surface defect detection.
We introduce end-to-end training of the two-stage network together with several extensions to the training process.
We show state-of-the-art results on three defect detection datasets.
arXiv Detail & Related papers (2020-07-15T13:42:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.