Optimizing quantum error correction protocols with erasure qubits
- URL: http://arxiv.org/abs/2408.00829v2
- Date: Mon, 26 Aug 2024 19:10:25 GMT
- Title: Optimizing quantum error correction protocols with erasure qubits
- Authors: Shouzhen Gu, Yotam Vaknin, Alex Retzker, Aleksander Kubica,
- Abstract summary: Erasure qubits offer a promising avenue toward reducing the overhead of quantum error correction protocols.
We focus on the performance of the surface code as a quantum memory.
Our results indicate that QEC protocols with erasure qubits can outperform the ones with state-of-the-art transmons.
- Score: 42.00287729190062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Erasure qubits offer a promising avenue toward reducing the overhead of quantum error correction (QEC) protocols. However, they require additional operations, such as erasure checks, that may add extra noise and increase runtime of QEC protocols. To assess the benefits provided by erasure qubits, we focus on the performance of the surface code as a quantum memory. In particular, we analyze various erasure check schedules, find the correctable regions in the phase space of error parameters and probe the subthreshold scaling of the logical error rate. We then consider a realization of erasure qubits in the superconducting hardware architectures via dual-rail qubits. We use the standard transmon-based implementation of the surface code as the performance benchmark. Our results indicate that QEC protocols with erasure qubits can outperform the ones with state-of-the-art transmons, even in the absence of precise information about the locations of erasure errors.
Related papers
- Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Applying the Quantum Error-correcting Codes for Fault-tolerant Blind
Quantum Computation [33.51070104730591]
The Blind Quantum Computation (BQC) is a delegated protocol, which allows a client to rent a remote quantum server to implement desired quantum computations.
We propose a fault-tolerant blind quantum computation protocol with quantum error-correcting codes to avoid the accumulation and propagation of qubit errors during the computing.
arXiv Detail & Related papers (2023-01-05T08:52:55Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Mitigation of Crosstalk Errors in a Quantum Measurement and Its
Applications [1.433758865948252]
We present a framework for mitigating measurement errors, for both individual and crosstalk errors.
The mitigation protocol is realized in IBMQ Sydney and applied to the certification of entanglement-generating circuits.
arXiv Detail & Related papers (2021-12-20T16:20:49Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - A context-aware gate set tomography characterization of superconducting
qubits [1.4979445283937185]
We introduce a context-aware version of the gate set tomography protocol.
We experimentally infer context-dependent errors in a publicly accessible cloud-based superconducting qubits platform.
Our results show that when the GST is upgraded to include such features of context-awareness, a large coherence in the errors is observed.
arXiv Detail & Related papers (2021-03-17T21:41:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.