Enhancing Changepoint Detection: Penalty Learning through Deep Learning Techniques
- URL: http://arxiv.org/abs/2408.00856v3
- Date: Wed, 18 Sep 2024 00:39:43 GMT
- Title: Enhancing Changepoint Detection: Penalty Learning through Deep Learning Techniques
- Authors: Tung L Nguyen, Toby Dylan Hocking,
- Abstract summary: This study introduces a novel deep learning method for predicting penalty parameters.
It leads to demonstrably improved changepoint detection accuracy on large benchmark supervised labeled datasets.
- Score: 2.094821665776961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Changepoint detection, a technique for identifying significant shifts within data sequences, is crucial in various fields such as finance, genomics, medicine, etc. Dynamic programming changepoint detection algorithms are employed to identify the locations of changepoints within a sequence, which rely on a penalty parameter to regulate the number of changepoints. To estimate this penalty parameter, previous work uses simple models such as linear or tree-based models. This study introduces a novel deep learning method for predicting penalty parameters, leading to demonstrably improved changepoint detection accuracy on large benchmark supervised labeled datasets compared to previous methods.
Related papers
- Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
Retraining a model using its own predictions together with the original, potentially noisy labels is a well-known strategy for improving the model performance.<n>This paper addresses the question of how to optimally combine the model's predictions and the provided labels.<n>Our main contribution is the derivation of the Bayes optimal aggregator function to combine the current model's predictions and the given labels.
arXiv Detail & Related papers (2025-05-21T07:16:44Z) - Learning Penalty for Optimal Partitioning via Automatic Feature Extraction [0.0]
Changepoint detection identifies significant shifts in data sequences, making it important in areas like finance, genetics, and healthcare.<n>The Optimal Partitioning algorithms efficiently detect these changes, using a penalty parameter to limit the changepoints number.<n>This study proposes a novel approach that uses recurrent neural networks to learn this penalty directly from raw sequences by automatically extracting features.
arXiv Detail & Related papers (2025-05-12T10:07:55Z) - Neural Network-Based Change Point Detection for Large-Scale Time-Evolving Data [14.131002665374575]
We develop a detection strategy based on the following two-step procedure.
The strategy yields consistent estimates for both the number and the locations of the change points.
arXiv Detail & Related papers (2025-03-12T16:58:52Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Change points detection in crime-related time series: an on-line fuzzy
approach based on a shape space representation [0.0]
We propose an on-line method for detecting and querying change points in crime-related time series.
The method is able to accurately detect change points at very low computational costs.
arXiv Detail & Related papers (2023-12-18T10:49:03Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Unsupervised Learning of Initialization in Deep Neural Networks via
Maximum Mean Discrepancy [74.34895342081407]
We propose an unsupervised algorithm to find good initialization for input data.
We first notice that each parameter configuration in the parameter space corresponds to one particular downstream task of d-way classification.
We then conjecture that the success of learning is directly related to how diverse downstream tasks are in the vicinity of the initial parameters.
arXiv Detail & Related papers (2023-02-08T23:23:28Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Deep learning model solves change point detection for multiple change
types [69.77452691994712]
A change points detection aims to catch an abrupt disorder in data distribution.
We propose an approach that works in the multiple-distributions scenario.
arXiv Detail & Related papers (2022-04-15T09:44:21Z) - Learning Sinkhorn divergences for supervised change point detection [24.30834981766022]
We present a novel change point detection framework that uses true change point instances as supervision for learning a ground metric.
Our method can be used to learn a sparse metric which can be useful for both feature selection and interpretation.
arXiv Detail & Related papers (2022-02-08T17:11:40Z) - WATCH: Wasserstein Change Point Detection for High-Dimensional Time
Series Data [4.228718402877829]
Change point detection methods have the ability to discover changes in an unsupervised fashion.
We propose WATCH, a novel Wasserstein distance-based change point detection approach.
An extensive evaluation shows that WATCH is capable of accurately identifying change points and outperforming state-of-the-art methods.
arXiv Detail & Related papers (2022-01-18T16:55:29Z) - Online Changepoint Detection on a Budget [5.077509096253692]
Changepoints are abrupt variations in the underlying distribution of data.
We propose an online changepoint detection algorithm which compares favorably with offline changepoint detection algorithms.
arXiv Detail & Related papers (2022-01-11T00:20:33Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
We present Prior-Data Fitted Networks (PFNs)
PFNs leverage in-context learning in large-scale machine learning techniques to approximate a large set of posteriors.
We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems.
arXiv Detail & Related papers (2021-12-20T13:07:39Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Spike-and-Slab Generalized Additive Models and Scalable Algorithms for
High-Dimensional Data [0.0]
We propose hierarchical generalized additive models (GAMs) to accommodate high-dimensional data.
We consider the smoothing penalty for proper shrinkage of curve and separation of smoothing function linear and nonlinear spaces.
Two and deterministic algorithms, EM-Coordinate Descent and EM-Iterative Weighted Least Squares, are developed for different utilities.
arXiv Detail & Related papers (2021-10-27T14:11:13Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
We formulate a two-step unsupervised approach that overcomes this challenge by first learning powerful pixel-based features.
Our method produces state-of-the-art results in several challenging landmark detection datasets.
arXiv Detail & Related papers (2021-04-07T05:42:11Z) - Piecewise linear regression and classification [0.20305676256390928]
This paper proposes a method for solving multivariate regression and classification problems using piecewise linear predictors.
A Python implementation of the algorithm described in this paper is available at http://cse.lab.imtlucca.it/bemporad/parc.
arXiv Detail & Related papers (2021-03-10T17:07:57Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - Sequential Changepoint Detection in Neural Networks with Checkpoints [11.763229353978321]
We introduce a framework for online changepoint detection and simultaneous model learning.
It is based on detecting changepoints across time by sequentially performing generalized likelihood ratio tests.
We show improved performance compared to online Bayesian changepoint detection.
arXiv Detail & Related papers (2020-10-06T21:49:54Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
We argue that the Gauss-Newton approximation should be understood as a local linearization of the underlying Bayesian neural network (BNN)
Because we use this linearized model for posterior inference, we should also predict using this modified model instead of the original one.
We refer to this modified predictive as "GLM predictive" and show that it effectively resolves common underfitting problems of the Laplace approximation.
arXiv Detail & Related papers (2020-08-19T12:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.