Sequential Changepoint Detection in Neural Networks with Checkpoints
- URL: http://arxiv.org/abs/2010.03053v1
- Date: Tue, 6 Oct 2020 21:49:54 GMT
- Title: Sequential Changepoint Detection in Neural Networks with Checkpoints
- Authors: Michalis K. Titsias, Jakub Sygnowski, Yutian Chen
- Abstract summary: We introduce a framework for online changepoint detection and simultaneous model learning.
It is based on detecting changepoints across time by sequentially performing generalized likelihood ratio tests.
We show improved performance compared to online Bayesian changepoint detection.
- Score: 11.763229353978321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a framework for online changepoint detection and simultaneous
model learning which is applicable to highly parametrized models, such as deep
neural networks. It is based on detecting changepoints across time by
sequentially performing generalized likelihood ratio tests that require only
evaluations of simple prediction score functions. This procedure makes use of
checkpoints, consisting of early versions of the actual model parameters, that
allow to detect distributional changes by performing predictions on future
data. We define an algorithm that bounds the Type I error in the sequential
testing procedure. We demonstrate the efficiency of our method in challenging
continual learning applications with unknown task changepoints, and show
improved performance compared to online Bayesian changepoint detection.
Related papers
- Enhancing Changepoint Detection: Penalty Learning through Deep Learning Techniques [2.094821665776961]
This study introduces a novel deep learning method for predicting penalty parameters.
It leads to demonstrably improved changepoint detection accuracy on large benchmark supervised labeled datasets.
arXiv Detail & Related papers (2024-08-01T18:10:05Z) - Continual Learning via Sequential Function-Space Variational Inference [65.96686740015902]
We propose an objective derived by formulating continual learning as sequential function-space variational inference.
Compared to objectives that directly regularize neural network predictions, the proposed objective allows for more flexible variational distributions.
We demonstrate that, across a range of task sequences, neural networks trained via sequential function-space variational inference achieve better predictive accuracy than networks trained with related methods.
arXiv Detail & Related papers (2023-12-28T18:44:32Z) - Automatic Change-Point Detection in Time Series via Deep Learning [8.43086628139493]
We show how to automatically generate new offline detection methods based on training a neural network.
We present theory that quantifies the error rate for such an approach, and how it depends on the amount of training data.
Our method also shows strong results in detecting and localising changes in activity based on accelerometer data.
arXiv Detail & Related papers (2022-11-07T20:59:14Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Online Changepoint Detection on a Budget [5.077509096253692]
Changepoints are abrupt variations in the underlying distribution of data.
We propose an online changepoint detection algorithm which compares favorably with offline changepoint detection algorithms.
arXiv Detail & Related papers (2022-01-11T00:20:33Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
We study the problem of test time robustification, i.e., using the test input to improve model robustness.
Recent prior works have proposed methods for test time adaptation, however, they each introduce additional assumptions.
We propose a simple approach that can be used in any test setting where the model is probabilistic and adaptable.
arXiv Detail & Related papers (2021-10-18T17:55:11Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Score-Based Change Detection for Gradient-Based Learning Machines [9.670556223243182]
We present a generic score-based change detection method that can detect a change in any number of components of a machine learning model trained via empirical risk minimization.
We establish the consistency of the hypothesis test and show how to calibrate it to achieve a prescribed false alarm rate.
arXiv Detail & Related papers (2021-06-27T01:38:11Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.