論文の概要: UniMoT: Unified Molecule-Text Language Model with Discrete Token Representation
- arxiv url: http://arxiv.org/abs/2408.00863v1
- Date: Thu, 1 Aug 2024 18:31:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 15:16:52.058732
- Title: UniMoT: Unified Molecule-Text Language Model with Discrete Token Representation
- Title(参考訳): UniMoT:離散トークン表現を用いた統一分子テキスト言語モデル
- Authors: Juzheng Zhang, Yatao Bian, Yongqiang Chen, Quanming Yao,
- Abstract要約: トークン化アーキテクチャを採用した統一分子テキストLLMであるUniMoTを紹介する。
ベクトル量子化駆動型トークン化器は、分子を因果依存性を持つ分子トークンの配列に変換する。
UniMoTは、分子間テキストとテキスト間タスクの両方を実行するマルチモーダル・ジェネラリストとして登場した。
- 参考スコア(独自算出の注目度): 35.51027934845928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The remarkable success of Large Language Models (LLMs) across diverse tasks has driven the research community to extend their capabilities to molecular applications. However, most molecular LLMs employ adapter-based architectures that do not treat molecule and text modalities equally and lack a supervision signal for the molecule modality. To address these issues, we introduce UniMoT, a Unified Molecule-Text LLM adopting a tokenizer-based architecture that expands the vocabulary of LLM with molecule tokens. Specifically, we introduce a Vector Quantization-driven tokenizer that incorporates a Q-Former to bridge the modality gap between molecule and text. This tokenizer transforms molecules into sequences of molecule tokens with causal dependency, encapsulating high-level molecular and textual information. Equipped with this tokenizer, UniMoT can unify molecule and text modalities under a shared token representation and an autoregressive training paradigm, enabling it to interpret molecules as a foreign language and generate them as text. Following a four-stage training scheme, UniMoT emerges as a multi-modal generalist capable of performing both molecule-to-text and text-to-molecule tasks. Extensive experiments demonstrate that UniMoT achieves state-of-the-art performance across a wide range of molecule comprehension and generation tasks.
- Abstract(参考訳): 様々なタスクにわたる大規模言語モデル(LLM)の顕著な成功は、研究コミュニティを分子アプリケーションに拡張させるきっかけとなった。
しかし、ほとんどの分子LLMは、分子とテキストのモダリティを等しく扱わず、分子のモダリティを監督する信号を持たないアダプタベースのアーキテクチャを採用している。
これらの問題に対処するために,LLMの語彙を分子トークンで拡張するトークン化アーキテクチャを採用したUniMoTを導入する。
具体的には,Q-Formerを組み込んで,分子とテキスト間のモダリティギャップを埋めるベクトル量子化によるトークン化手法を提案する。
このトークン化剤は、分子を因果依存性を持つ分子トークンの配列に変換し、高レベルの分子およびテキスト情報をカプセル化する。
このトークン化剤を装備したUniMoTは、共有トークン表現と自己回帰訓練パラダイムの下で分子とテキストのモダリティを統一することができ、分子を外国語として解釈し、それらをテキストとして生成することができる。
4段階のトレーニングスキームの後、UniMoTは分子間テキストとテキスト間タスクの両方を実行するマルチモーダル・ジェネラリストとして登場した。
広範な実験により、UniMoTは幅広い分子理解および生成タスクで最先端のパフォーマンスを達成することが示されている。
関連論文リスト
- Chemical Language Model Linker: blending text and molecules with modular adapters [2.2667044928324747]
我々は、ChemLML(ChemLML)という、軽量なアダプタベースの戦略を提案する。
ChemLMLは2つの単一ドメインモデルをブレンドし、テキスト記述から条件付き分子生成を得る。
SMILESとSELFIESのChemLMLにおける分子表現の選択は,条件付き分子生成性能に強い影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2024-10-26T13:40:13Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
小型分子のための機能的グループ認識表現(FARM)について紹介する。
FARMはSMILES、自然言語、分子グラフのギャップを埋めるために設計された基礎モデルである。
MoleculeNetデータセット上でFARMを厳格に評価し、12タスク中10タスクで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-10-02T23:04:58Z) - MolX: Enhancing Large Language Models for Molecular Learning with A Multi-Modal Extension [34.586861881519134]
タスクハンドリング能力の強い大規模言語モデル(LLM)は、様々な分野において顕著な進歩を見せている。
本研究は、分子をマルチモーダルな外部モジュール、すなわちMollXに装備することで、分子の理解能力を高めることを目的とする。
特に,分子の表現にSMILES文字列を直接使用する代わりに,特定のエンコーダを用いて,SMILES文字列と2次元分子グラフ表現の両方から微細な特徴を抽出する。
論文 参考訳(メタデータ) (2024-06-10T20:25:18Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
本稿では,学生に類似した多制約分子生成大言語モデルTSMMGを紹介する。
TSMMGを訓練するために、これらの「教師」から分子知識を抽出し、大量のテキスト-分子対を構築する。
我々は,TSMMGが複雑で自然言語で記述された特性を満たす分子を生成できることを実験的に明らかにした。
論文 参考訳(メタデータ) (2024-03-20T02:15:55Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
大規模言語モデル(LLM)は、様々なクロスモーダルタスクにおいて顕著なパフォーマンスを示している。
本研究では,分子カプセル翻訳のためのインコンテキストFew-Shot Molecule Learningパラダイムを提案する。
分子理解とテキストベースの分子生成を含む分子キャプション翻訳におけるMollReGPTの有効性を評価する。
論文 参考訳(メタデータ) (2023-06-11T08:16:25Z) - MolXPT: Wrapping Molecules with Text for Generative Pre-training [141.0924452870112]
MolXPTは、テキストでラップされたSMILESで事前訓練されたテキストと分子の統一言語モデルである。
MolXPT は MoleculeNet 上での分子特性予測の強いベースラインを上回ります。
論文 参考訳(メタデータ) (2023-05-18T03:58:19Z) - Multi-modal Molecule Structure-text Model for Text-based Retrieval and
Editing [107.49804059269212]
分子の化学構造とテキスト記述を共同で学習し, マルチモーダルな分子構造テキストモデル, MoleculeSTMを提案する。
実験において、分子STMは、新しい生化学的概念を創出するための最先端の一般化能力を得る。
論文 参考訳(メタデータ) (2022-12-21T06:18:31Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Translation between Molecules and Natural Language [43.518805086280466]
本稿では,未ラベルの自然言語テキストや分子文字列の事前学習のための自己教師型学習フレームワークを提案する。
$textbfMolT5$は、分子キャプションやテキストベースのdenovo分子生成など、従来の視覚言語タスクの新しい、有用な、挑戦的なアナログを可能にする。
論文 参考訳(メタデータ) (2022-04-25T17:48:09Z) - MM-Deacon: Multimodal molecular domain embedding analysis via
contrastive learning [6.761743360275381]
MM-Deacon と呼ばれる多モード分子埋め込み生成手法を提案する。
MM-DeaconはSMILESとIUPAC分子表現を2つの異なるモードとして訓練する。
分子クラスタリング,クロスモーダル分子探索,薬物類似性評価,薬物と薬物の相互作用タスクに対する分子埋め込みの堅牢性を評価した。
論文 参考訳(メタデータ) (2021-09-18T04:46:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。