Noise-Resilient and Reduced Depth Approximate Adders for NISQ Quantum Computing
- URL: http://arxiv.org/abs/2408.00927v1
- Date: Thu, 1 Aug 2024 21:34:02 GMT
- Title: Noise-Resilient and Reduced Depth Approximate Adders for NISQ Quantum Computing
- Authors: Bhaskar Gaur, Travis S. Humble, Himanshu Thapliyal,
- Abstract summary: We investigate how approximate computing can improve the noise resilience of quantum adder circuits in NISQ quantum computing.
We propose five designs of approximate quantum adders to reduce depth while making them noise-resilient.
- Score: 0.5188841610098435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The "Noisy intermediate-scale quantum" NISQ machine era primarily focuses on mitigating noise, controlling errors, and executing high-fidelity operations, hence requiring shallow circuit depth and noise robustness. Approximate computing is a novel computing paradigm that produces imprecise results by relaxing the need for fully precise output for error-tolerant applications including multimedia, data mining, and image processing. We investigate how approximate computing can improve the noise resilience of quantum adder circuits in NISQ quantum computing. We propose five designs of approximate quantum adders to reduce depth while making them noise-resilient, in which three designs are with carryout, while two are without carryout. We have used novel design approaches that include approximating the Sum only from the inputs (pass-through designs) and having zero depth, as they need no quantum gates. The second design style uses a single CNOT gate to approximate the SUM with a constant depth of O(1). We performed our experimentation on IBM Qiskit on noise models including thermal, depolarizing, amplitude damping, phase damping, and bitflip: (i) Compared to exact quantum ripple carry adder without carryout the proposed approximate adders without carryout have improved fidelity ranging from 8.34% to 219.22%, and (ii) Compared to exact quantum ripple carry adder with carryout the proposed approximate adders with carryout have improved fidelity ranging from 8.23% to 371%. Further, the proposed approximate quantum adders are evaluated in terms of various error metrics.
Related papers
- A Logarithmic Depth Quantum Carry-Lookahead Modulo $(2^n-1)$ Adder [0.8192907805418581]
Development of quantum arithmetic circuits for modulo addition is vital for implementing quantum algorithms.
Current Noisy Intermediate Scale Quantum (NISQ) era quantum computers cannot handle the additional computational cost associated with fault-tolerant designs.
This work presents quantum carry-lookahead modulo $(2n - 1)$ adder (QCLMA), which is designed to receive two n-bit numbers and perform their addition with an O(log n) depth.
arXiv Detail & Related papers (2024-08-02T04:31:22Z) - Performing Non-Local Phase Estimation with a Rydberg-Superconducting Qubit Hybrid [0.0]
We numerically simulate the execution of the distributed phase estimation algorithm in a proposed novel superconducting-resonator-atom hybrid system.
An entangling gate between two qubits is utilised in the distributed phase estimation algorithm, called an E2 gate.
The GRAPE algorithm showed very accurate engineering of Rydberg atom single and multi-qubit gates with fidelities higher than 90%.
arXiv Detail & Related papers (2024-02-22T16:11:48Z) - Optimized Noise Suppression for Quantum Circuits [0.40964539027092917]
Crosstalk noise is a severe error source in, e.g., cross-resonance based superconducting quantum processors.
Intrepid programming algorithm extends previous work on optimized qubit routing by swap insertion.
We evaluate the proposed method by characterizing crosstalk noise for two chips with up to 127 qubits.
arXiv Detail & Related papers (2024-01-12T07:34:59Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Quantum thermodynamic methods to purify a qubit on a quantum processing
unit [68.8204255655161]
We report on a quantum thermodynamic method to purify a qubit on a quantum processing unit equipped with identical qubits.
Our starting point is a three qubit design that emulates the well known two qubit swap engine.
We implement it on a publicly available superconducting qubit based QPU, and observe a purification capability down to 200 mK.
arXiv Detail & Related papers (2022-01-31T16:13:57Z) - QuantumNAT: Quantum Noise-Aware Training with Noise Injection,
Quantization and Normalization [22.900530292063348]
Quantum Circuits (PQC) are promising towards quantum advantage on near-term quantum hardware.
However, due to the large quantum noises (errors), the performance of PQC models has a severe degradation on real quantum devices.
We present QuantumNAT, a PQC-specific framework to perform noise-aware optimizations in both training and inference stages to improve robustness.
arXiv Detail & Related papers (2021-10-21T17:59:19Z) - Achieving fault tolerance against amplitude-damping noise [1.7289359743609742]
We develop a protocol for fault-tolerant encoded quantum computing components in the presence of amplitude-damping noise.
We describe a universal set of fault-tolerant encoded gadgets and compute the pseudothreshold for the noise.
Our work demonstrates the possibility of applying the ideas of quantum fault tolerance to targeted noise models.
arXiv Detail & Related papers (2021-07-12T14:59:54Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.