Optimized Noise Suppression for Quantum Circuits
- URL: http://arxiv.org/abs/2401.06423v2
- Date: Sat, 28 Sep 2024 13:28:44 GMT
- Title: Optimized Noise Suppression for Quantum Circuits
- Authors: Friedrich Wagner, Daniel J. Egger, Frauke Liers,
- Abstract summary: Crosstalk noise is a severe error source in, e.g., cross-resonance based superconducting quantum processors.
Intrepid programming algorithm extends previous work on optimized qubit routing by swap insertion.
We evaluate the proposed method by characterizing crosstalk noise for two chips with up to 127 qubits.
- Score: 0.40964539027092917
- License:
- Abstract: Quantum computation promises to advance a wide range of computational tasks. However, current quantum hardware suffers from noise and is too small for error correction. Thus, accurately utilizing noisy quantum computers strongly relies on noise characterization, mitigation, and suppression. Crucially, these methods must also be efficient in terms of their classical and quantum overhead. Here, we efficiently characterize and mitigate crosstalk noise, which is a severe error source in, e.g., cross-resonance based superconducting quantum processors. For crosstalk characterization, we develop a simplified measurement experiment. Furthermore, we analyze the problem of optimal experiment scheduling and solve it for common hardware architectures. After characterization, we mitigate noise in quantum circuits by a noise-aware qubit routing algorithm. Our integer programming algorithm extends previous work on optimized qubit routing by swap insertion. We incorporate the measured crosstalk errors in addition to other, more easily accessible noise data in the objective function. Furthermore, we strengthen the underlying integer linear model by proving a convex hull result about an associated class of polytopes, which has applications beyond this work. We evaluate the proposed method by characterizing crosstalk noise for two chips with up to 127 qubits and leverage the resulting data to improve the approximation ratio of the Quantum Approximate Optimization Algorithm by up to 10 % compared to other established noise-aware routing methods. Our work clearly demonstrates the gains of including noise data when mapping abstract quantum circuits to hardware native ones.
Related papers
- Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Accurate and Honest Approximation of Correlated Qubit Noise [39.58317527488534]
We propose an efficient systematic construction of approximate noise channels, where their accuracy can be enhanced by incorporating noise components with higher qubit-qubit correlation degree.
We find that, for realistic noise strength typical for fixed-frequency superconducting qubits, correlated noise beyond two-qubit correlation can significantly affect the code simulation accuracy.
arXiv Detail & Related papers (2023-11-15T19:00:34Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Characterizing and mitigating coherent errors in a trapped ion quantum
processor using hidden inverses [0.20315704654772418]
Quantum computing testbeds exhibit high-fidelity quantum control over small collections of qubits.
These noisy intermediate-scale devices can support a sufficient number of sequential operations prior to decoherence.
While the results of these algorithms are imperfect, these imperfections can help bootstrap quantum computer testbed development.
arXiv Detail & Related papers (2022-05-27T20:35:24Z) - Optimization and Noise Analysis of the Quantum Algorithm for Solving
One-Dimensional Poisson Equation [17.65730040410185]
We propose an efficient quantum algorithm for solving one-dimensional Poisson equation.
We further develop this algorithm to make it closer to the real application on the noisy intermediate-scale quantum (NISQ) devices.
We analyze the effect of common noise existing in the real quantum devices on our algorithm using the IBM Qiskit toolkit.
arXiv Detail & Related papers (2021-08-27T09:44:41Z) - Mitigating depolarizing noise on quantum computers with noise-estimation
circuits [1.3375143521862154]
We present a method to mitigate the depolarizing noise by first estimating its rate with a noise-estimation circuit.
We find that our approach in combination with readout-error correction, compiling, randomized, and zero-noise extrapolation produces results close to exact results even for circuits containing hundreds of CNOT gates.
arXiv Detail & Related papers (2021-03-15T17:59:06Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
Noise mitigation can be performed up to some error for which we derive upper bounds.
Experiments on 15 (23) qubits using IBM's devices to test both the noise model and the error-mitigation scheme.
We show that similar effects are expected for Haar-random quantum states and states generated by shallow-depth random circuits.
arXiv Detail & Related papers (2021-01-07T02:19:58Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - A deep learning model for noise prediction on near-term quantum devices [137.6408511310322]
We train a convolutional neural network on experimental data from a quantum device to learn a hardware-specific noise model.
A compiler then uses the trained network as a noise predictor and inserts sequences of gates in circuits so as to minimize expected noise.
arXiv Detail & Related papers (2020-05-21T17:47:29Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.