Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning
- URL: http://arxiv.org/abs/2404.03233v1
- Date: Thu, 4 Apr 2024 06:37:46 GMT
- Title: Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning
- Authors: Hongsheng Hu, Shuo Wang, Tian Dong, Minhui Xue,
- Abstract summary: We conduct the first investigation to understand the extent to which machine unlearning can leak the confidential content of unlearned data.
Under the Machine Learning as a Service setting, we propose unlearning inversion attacks that can reveal the feature and label information of an unlearned sample.
The experimental results indicate that the proposed attack can reveal the sensitive information of the unlearned data.
- Score: 16.809644622465086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning has become a promising solution for fulfilling the "right to be forgotten", under which individuals can request the deletion of their data from machine learning models. However, existing studies of machine unlearning mainly focus on the efficacy and efficiency of unlearning methods, while neglecting the investigation of the privacy vulnerability during the unlearning process. With two versions of a model available to an adversary, that is, the original model and the unlearned model, machine unlearning opens up a new attack surface. In this paper, we conduct the first investigation to understand the extent to which machine unlearning can leak the confidential content of the unlearned data. Specifically, under the Machine Learning as a Service setting, we propose unlearning inversion attacks that can reveal the feature and label information of an unlearned sample by only accessing the original and unlearned model. The effectiveness of the proposed unlearning inversion attacks is evaluated through extensive experiments on benchmark datasets across various model architectures and on both exact and approximate representative unlearning approaches. The experimental results indicate that the proposed attack can reveal the sensitive information of the unlearned data. As such, we identify three possible defenses that help to mitigate the proposed attacks, while at the cost of reducing the utility of the unlearned model. The study in this paper uncovers an underexplored gap between machine unlearning and the privacy of unlearned data, highlighting the need for the careful design of mechanisms for implementing unlearning without leaking the information of the unlearned data.
Related papers
- Game-Theoretic Machine Unlearning: Mitigating Extra Privacy Leakage [12.737028324709609]
Recent legislation obligates organizations to remove requested data and its influence from a trained model.
We propose a game-theoretic machine unlearning algorithm that simulates the competitive relationship between unlearning performance and privacy protection.
arXiv Detail & Related papers (2024-11-06T13:47:04Z) - RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Large language models trained on web-scale corpora can memorize undesirable datapoints.
Many machine unlearning methods have been proposed that aim to 'erase' these datapoints from trained models.
We propose the RESTOR framework for machine unlearning based on the following dimensions.
arXiv Detail & Related papers (2024-10-31T20:54:35Z) - Zero-shot Class Unlearning via Layer-wise Relevance Analysis and Neuronal Path Perturbation [11.174705227990241]
Machine unlearning is a technique that removes specific data influences from trained models without the need for extensive retraining.
This paper presents a novel approach to machine unlearning by employing Layer-wise Relevance Analysis and Neuronal Path Perturbation.
Our method balances machine unlearning performance and model utility by identifying and perturbing highly relevant neurons, thereby achieving effective unlearning.
arXiv Detail & Related papers (2024-10-31T07:37:04Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
We introduce two novel adversarial unlearning processes capable of circumventing both types of verification strategies.
This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
arXiv Detail & Related papers (2024-08-01T21:37:10Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - A Duty to Forget, a Right to be Assured? Exposing Vulnerabilities in Machine Unlearning Services [31.347825826778276]
We try to explore the potential threats posed by unlearning services in Machine Learning (ML)
We propose two strategies that leverage over-unlearning to measure the impact on the trade-off balancing.
Results indicate significant potential for both strategies to undermine model efficacy in unlearning scenarios.
arXiv Detail & Related papers (2023-09-15T08:00:45Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
We consider instance-wise unlearning, of which the goal is to delete information on a set of instances from a pre-trained model.
We propose two methods that reduce forgetting on the remaining data: 1) utilizing adversarial examples to overcome forgetting at the representation-level and 2) leveraging weight importance metrics to pinpoint network parameters guilty of propagating unwanted information.
arXiv Detail & Related papers (2023-01-27T07:53:50Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.