論文の概要: Enabling High Data Throughput Reinforcement Learning on GPUs: A Domain Agnostic Framework for Data-Driven Scientific Research
- arxiv url: http://arxiv.org/abs/2408.00930v1
- Date: Thu, 1 Aug 2024 21:38:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 14:56:17.908386
- Title: Enabling High Data Throughput Reinforcement Learning on GPUs: A Domain Agnostic Framework for Data-Driven Scientific Research
- Title(参考訳): GPUによる高データスループット強化学習の実現: データ駆動科学研究のためのドメインに依存しないフレームワーク
- Authors: Tian Lan, Huan Wang, Caiming Xiong, Silvio Savarese,
- Abstract要約: 我々は、強化学習の適用において重要なシステムのボトルネックを克服するために設計されたフレームワークであるWarpSciを紹介する。
我々は、CPUとGPU間のデータ転送の必要性を排除し、数千のシミュレーションを同時実行可能にする。
- 参考スコア(独自算出の注目度): 90.91438597133211
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce WarpSci, a domain agnostic framework designed to overcome crucial system bottlenecks encountered in the application of reinforcement learning to intricate environments with vast datasets featuring high-dimensional observation or action spaces. Notably, our framework eliminates the need for data transfer between the CPU and GPU, enabling the concurrent execution of thousands of simulations on a single or multiple GPUs. This high data throughput architecture proves particularly advantageous for data-driven scientific research, where intricate environment models are commonly essential.
- Abstract(参考訳): WarpSciは、高次元の観測や行動空間を特徴とする膨大なデータセットを用いて、複雑な環境に強化学習を適用する際に発生する重要なシステムのボトルネックを克服するために設計されたドメインに依存しないフレームワークである。
特に、我々のフレームワークは、CPUとGPU間のデータ転送の必要性を排除し、単一のまたは複数のGPU上で数千のシミュレーションを同時実行可能にする。
この高いデータスループットアーキテクチャは、複雑な環境モデルが一般的に必須であるデータ駆動科学研究において特に有利である。
関連論文リスト
- How Important are Data Augmentations to Close the Domain Gap for Object Detection in Orbit? [15.550663626482903]
宇宙空間におけるコンピュータビジョンの領域ギャップを埋めるためのデータ拡張の有効性について検討する。
本稿では,軌道画像に観察される視覚効果をエミュレートするために開発された2つの新しいデータ拡張法を提案する。
論文 参考訳(メタデータ) (2024-10-21T08:24:46Z) - Data Science for Geographic Information Systems [0.0]
データサイエンスを地理情報システムに統合することで、これらのツールの完全な空間分析プラットフォームへの進化が促進された。
機械学習とビッグデータ技術の採用により、これらのプラットフォームはますます複雑なデータを扱う能力を備えてきた。
この研究は、研究分野としてのデータサイエンスとGISの歴史的・技術的進化を辿り、ドメイン間の収束の要点を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-04T18:50:58Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Domain Adaptive Graph Neural Networks for Constraining Cosmological Parameters Across Multiple Data Sets [40.19690479537335]
DA-GNNは,データセット間のタスクにおいて高い精度とロバスト性を実現する。
このことは、DA-GNNがドメインに依存しない宇宙情報を抽出するための有望な方法であることを示している。
論文 参考訳(メタデータ) (2023-11-02T20:40:21Z) - The Bearable Lightness of Big Data: Towards Massive Public Datasets in
Scientific Machine Learning [0.0]
損失のある圧縮アルゴリズムは、オープンソースのデータレポジトリに高忠実な科学データを公開するための現実的な経路を提供することを示す。
本稿では,ビッグデータフレームワークの構築に必要な要件を概説し,構築し,評価する。
論文 参考訳(メタデータ) (2022-07-25T21:44:53Z) - An Extension to Basis-Hypervectors for Learning from Circular Data in
Hyperdimensional Computing [62.997667081978825]
超次元計算(Hyperdimensional Computing、HDC)は、高次元ランダム空間の性質に基づく計算フレームワークである。
本稿では, 基本超ベクトル集合について検討し, 一般にHDCへの実践的貢献につながっている。
本稿では,HDCを用いた機械学習において,これまでに扱ったことのない重要な情報である円形データから学習する手法を提案する。
論文 参考訳(メタデータ) (2022-05-16T18:04:55Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
注意に基づくアーキテクチャ(例えばTransformers)は、分散シフトに対してかなり堅牢であることを示す。
我々の実験は、畳み込みネットワークをトランスフォーマーに置き換えることによって、過去のデバイスを壊滅的に忘れることを大幅に減らせることを示した。
論文 参考訳(メタデータ) (2021-06-10T21:04:18Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Deflating Dataset Bias Using Synthetic Data Augmentation [8.509201763744246]
自律走行車(AV)の視覚タスクの最先端の手法は、教師あり学習に依存している。
本研究の目的は,視覚タスクにおける実際のデータセットのギャップを埋めるために,ターゲットとなる合成データ拡張の利用を検討することである。
AVに実用的な3つの異なるコンピュータビジョンタスクに関する実証研究は、トレーニングミックスに合成データを持つことは、クロスデータセットの一般化性能を著しく向上させることを一貫して示している。
論文 参考訳(メタデータ) (2020-04-28T21:56:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。