On the Resilience of LLM-Based Multi-Agent Collaboration with Faulty Agents
- URL: http://arxiv.org/abs/2408.00989v3
- Date: Tue, 28 Jan 2025 07:45:50 GMT
- Title: On the Resilience of LLM-Based Multi-Agent Collaboration with Faulty Agents
- Authors: Jen-tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan Wang, Youliang Yuan, Michael R. Lyu, Maarten Sap,
- Abstract summary: Large language model-based multi-agent systems have shown great abilities across various tasks due to the collaboration of expert agents.<n>However, the impact of clumsy or even malicious agents, on the overall performance of the system remains underexplored.<n>This paper investigates what is the resilience of various system structures under faulty agents.
- Score: 58.79302663733703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language model-based multi-agent systems have shown great abilities across various tasks due to the collaboration of expert agents, each focusing on a specific domain. However, the impact of clumsy or even malicious agents, i.e., those who frequently make errors in their tasks, on the overall performance of the system remains underexplored. This paper investigates: (1) What is the resilience of various system structures (e.g., A$\rightarrow$B$\rightarrow$C, A$\leftrightarrow$B$\leftrightarrow$C) under faulty agents, on different downstream tasks? (2) How can we increase system resilience to defend against these agents? To simulate faulty agents, we propose two approaches, AutoTransform and AutoInject, which introduce mistakes into the agents' responses. We select four downstream tasks, including code generation, math problems, translation, and text evaluation. Results suggest that the hierarchical structure, i.e., A$\rightarrow$(B$\leftrightarrow$C), exhibits superior resilience with the lowest performance drop of $9.2\%$, compared to $26.0\%$ and $31.2\%$ of other two structures. Additionally, we improve the system resilience with two methods, introducing a mechanism for each agent to challenge others' outputs, and an additional agent to review and correct messages. Our code and data are available at https://github.com/CUHK-ARISE/MAS-Resilience.
Related papers
- Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems [50.29939179830491]
Failure attribution in LLM multi-agent systems remains underexplored and labor-intensive.
We develop and evaluate three automated failure attribution methods, summarizing their corresponding pros and cons.
The best method achieves 53.5% accuracy in identifying failure-responsible agents but only 14.2% in pinpointing failure steps.
arXiv Detail & Related papers (2025-04-30T23:09:44Z) - Preventing Rogue Agents Improves Multi-Agent Collaboration [21.955058255432974]
Multi-agent systems, where specialized agents collaborate to solve a shared task hold great potential.
A single agent can cause the entire system to fail.
In this work, we propose to $textitmonitor$ agents during action prediction and $textitintervene$ when a future error is likely to occur.
arXiv Detail & Related papers (2025-02-09T18:35:08Z) - Multi-Agent Stochastic Bandits Robust to Adversarial Corruptions [6.234292942334148]
We propose a multi-agent cooperative learning algorithm that is robust to adversarial corruptions.
As a side-product, our algorithm also improves the state-of-the-art regret bounds when reducing to both the single-agent and homogeneous multi-agent scenarios.
arXiv Detail & Related papers (2024-11-12T20:20:26Z) - Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks [39.084974125007165]
We introduce Magentic-One, a high-performing open-source agentic system for solving complex tasks.
Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, tracks progress, and re-plans to recover from errors.
We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks.
arXiv Detail & Related papers (2024-11-07T06:36:19Z) - A Troublemaker with Contagious Jailbreak Makes Chaos in Honest Towns [19.015202590038996]
A key component of agents is memory, which stores vital information but is susceptible to jailbreak attacks.
Existing research mainly focuses on single-agent attacks and shared memory attacks.
We propose the Troublemaker Makes Chaos in Honest Town (TMCHT) task, a large-scale, multi-agent, multi-topology text-based attack evaluation framework.
arXiv Detail & Related papers (2024-10-21T16:21:24Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.
In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.
Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.
We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.
We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - A Unified Debugging Approach via LLM-Based Multi-Agent Synergy [39.11825182386288]
FixAgent is an end-to-end framework for unified debug through multi-agent synergy.
It significantly outperforms state-of-the-art repair methods, fixing 1.25$times$ to 2.56$times$ bugs on the repo-level benchmark, Defects4J.
arXiv Detail & Related papers (2024-04-26T04:55:35Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agent is designed to enhance the capabilities of Large Language Models (LLMs) in task-solving.
Our framework includes two novel modules: hierarchical Objects and Key Results generation and multi-level evaluation.
arXiv Detail & Related papers (2023-11-28T06:16:30Z) - Malicious Agent Detection for Robust Multi-Agent Collaborative Perception [52.261231738242266]
Multi-agent collaborative (MAC) perception is more vulnerable to adversarial attacks than single-agent perception.
We propose Malicious Agent Detection (MADE), a reactive defense specific to MAC perception.
We conduct comprehensive evaluations on a benchmark 3D dataset V2X-sim and a real-road dataset DAIR-V2X.
arXiv Detail & Related papers (2023-10-18T11:36:42Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
We propose automatically selecting a team of agents from candidates to collaborate in a dynamic communication structure toward different tasks and domains.
Specifically, we build a framework named Dynamic LLM-Powered Agent Network ($textDyLAN$) for LLM-powered agent collaboration.
We demonstrate that DyLAN outperforms strong baselines in code generation, decision-making, general reasoning, and arithmetic reasoning tasks with moderate computational cost.
arXiv Detail & Related papers (2023-10-03T16:05:48Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
Diffusion model (DM) recently achieved huge success in various scenarios including offline reinforcement learning.
We propose MADiff, a novel generative multi-agent learning framework to tackle this problem.
Our experiments show the superior performance of MADiff compared to baseline algorithms in a wide range of multi-agent learning tasks.
arXiv Detail & Related papers (2023-05-27T02:14:09Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
We train a network to map a dataset of past experiences to optimal behavior.
The retrieval process is trained to retrieve information from the dataset that may be useful in the current context.
We show that retrieval-augmented R2D2 learns significantly faster than the baseline R2D2 agent and achieves higher scores.
arXiv Detail & Related papers (2022-02-17T02:44:05Z) - ERMAS: Becoming Robust to Reward Function Sim-to-Real Gaps in
Multi-Agent Simulations [110.72725220033983]
Epsilon-Robust Multi-Agent Simulation (ERMAS) is a framework for learning AI policies that are robust to such multiagent sim-to-real gaps.
ERMAS learns tax policies that are robust to changes in agent risk aversion, improving social welfare by up to 15% in complextemporal simulations.
In particular, ERMAS learns tax policies that are robust to changes in agent risk aversion, improving social welfare by up to 15% in complextemporal simulations.
arXiv Detail & Related papers (2021-06-10T04:32:20Z) - Regret Bounds for Decentralized Learning in Cooperative Multi-Agent
Dynamical Systems [3.9599054392856488]
quadratic analysis is challenging in Multi-Agent Reinforcement Learning (MARL)
We propose a MARL algorithm based on the construction of an auxiliary single-agent LQ problem.
We show that our algorithm provides a $tildeO(sqrtT)$ regret bound.
arXiv Detail & Related papers (2020-01-27T23:37:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.