Leveraging Large Language Models for Mobile App Review Feature Extraction
- URL: http://arxiv.org/abs/2408.01063v1
- Date: Fri, 2 Aug 2024 07:31:57 GMT
- Title: Leveraging Large Language Models for Mobile App Review Feature Extraction
- Authors: Quim Motger, Alessio Miaschi, Felice Dell'Orletta, Xavier Franch, Jordi Marco,
- Abstract summary: This study explores the hypothesis that encoder-only large language models can enhance feature extraction from mobile app reviews.
By leveraging crowdsourced annotations from an industrial context, we redefine feature extraction as a supervised token classification task.
Empirical evaluations demonstrate that this method improves the precision and recall of extracted features and enhances performance efficiency.
- Score: 4.879919005707447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile app review analysis presents unique challenges due to the low quality, subjective bias, and noisy content of user-generated documents. Extracting features from these reviews is essential for tasks such as feature prioritization and sentiment analysis, but it remains a challenging task. Meanwhile, encoder-only models based on the Transformer architecture have shown promising results for classification and information extraction tasks for multiple software engineering processes. This study explores the hypothesis that encoder-only large language models can enhance feature extraction from mobile app reviews. By leveraging crowdsourced annotations from an industrial context, we redefine feature extraction as a supervised token classification task. Our approach includes extending the pre-training of these models with a large corpus of user reviews to improve contextual understanding and employing instance selection techniques to optimize model fine-tuning. Empirical evaluations demonstrate that this method improves the precision and recall of extracted features and enhances performance efficiency. Key contributions include a novel approach to feature extraction, annotated datasets, extended pre-trained models, and an instance selection mechanism for cost-effective fine-tuning. This research provides practical methods and empirical evidence in applying large language models to natural language processing tasks within mobile app reviews, offering improved performance in feature extraction.
Related papers
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
We show that likelihoods serve as an effective gauge for language model performance.
We propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance.
arXiv Detail & Related papers (2024-11-12T13:14:09Z) - A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - Adjusting Pretrained Backbones for Performativity [34.390793811659556]
We propose a novel technique to adjust pretrained backbones for performativity in a modular way.
We show how it leads to smaller loss along the retraining trajectory and enables us to effectively select among candidate models to anticipate performance degradations.
arXiv Detail & Related papers (2024-10-06T14:41:13Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
Recent advances in machine learning have significantly impacted the field of information extraction.
We reformulate the task to be entity-centric, enabling the use of diverse metrics.
We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP metric.
arXiv Detail & Related papers (2024-02-06T22:15:09Z) - T-FREX: A Transformer-based Feature Extraction Method from Mobile App
Reviews [5.235401361674881]
We present T-FREX, a Transformer-based, fully automatic approach for mobile app review feature extraction.
First, we collect a set of ground truth features from users in a real crowdsourced software recommendation platform.
Then, we use this newly created dataset to fine-tune multiple LLMs on a named entity recognition task.
arXiv Detail & Related papers (2024-01-08T11:43:03Z) - Leveraging Contextual Information for Effective Entity Salience Detection [21.30389576465761]
We show that fine-tuning medium-sized language models with a cross-encoder style architecture yields substantial performance gains over feature engineering approaches.
We also show that zero-shot prompting of instruction-tuned language models yields inferior results, indicating the task's uniqueness and complexity.
arXiv Detail & Related papers (2023-09-14T19:04:40Z) - A Cloud-based Machine Learning Pipeline for the Efficient Extraction of
Insights from Customer Reviews [0.0]
We present a cloud-based system that can extract insights from customer reviews using machine learning methods integrated into a pipeline.
For topic modeling, our composite model uses transformer-based neural networks designed for natural language processing.
Our system can achieve better results than this task's existing topic modeling and keyword extraction solutions.
arXiv Detail & Related papers (2023-06-13T14:07:52Z) - ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented
Visual Models [102.63817106363597]
We build ELEVATER, the first benchmark to compare and evaluate pre-trained language-augmented visual models.
It consists of 20 image classification datasets and 35 object detection datasets, each of which is augmented with external knowledge.
We will release our toolkit and evaluation platforms for the research community.
arXiv Detail & Related papers (2022-04-19T10:23:42Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents.
In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text.
Our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.
arXiv Detail & Related papers (2020-04-30T15:37:38Z) - Unsupervised Opinion Summarization with Noising and Denoising [85.49169453434554]
We create a synthetic dataset from a corpus of user reviews by sampling a review, pretending it is a summary, and generating noisy versions thereof.
At test time, the model accepts genuine reviews and generates a summary containing salient opinions, treating those that do not reach consensus as noise.
arXiv Detail & Related papers (2020-04-21T16:54:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.