Adjusting Pretrained Backbones for Performativity
- URL: http://arxiv.org/abs/2410.04499v1
- Date: Sun, 6 Oct 2024 14:41:13 GMT
- Title: Adjusting Pretrained Backbones for Performativity
- Authors: Berker Demirel, Lingjing Kong, Kun Zhang, Theofanis Karaletsos, Celestine Mendler-Dünner, Francesco Locatello,
- Abstract summary: We propose a novel technique to adjust pretrained backbones for performativity in a modular way.
We show how it leads to smaller loss along the retraining trajectory and enables us to effectively select among candidate models to anticipate performance degradations.
- Score: 34.390793811659556
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the widespread deployment of deep learning models, they influence their environment in various ways. The induced distribution shifts can lead to unexpected performance degradation in deployed models. Existing methods to anticipate performativity typically incorporate information about the deployed model into the feature vector when predicting future outcomes. While enjoying appealing theoretical properties, modifying the input dimension of the prediction task is often not practical. To address this, we propose a novel technique to adjust pretrained backbones for performativity in a modular way, achieving better sample efficiency and enabling the reuse of existing deep learning assets. Focusing on performative label shift, the key idea is to train a shallow adapter module to perform a Bayes-optimal label shift correction to the backbone's logits given a sufficient statistic of the model to be deployed. As such, our framework decouples the construction of input-specific feature embeddings from the mechanism governing performativity. Motivated by dynamic benchmarking as a use-case, we evaluate our approach under adversarial sampling, for vision and language tasks. We show how it leads to smaller loss along the retraining trajectory and enables us to effectively select among candidate models to anticipate performance degradations. More broadly, our work provides a first baseline for addressing performativity in deep learning.
Related papers
- Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
We show how to adapt a pre-trained Vision Transformer to downstream recognition tasks with only a few learnable parameters.
We synthesize a task-specific query with a learnable and lightweight module, which is independent of the pre-trained model.
Our method achieves state-of-the-art performance under memory constraints, showcasing its applicability in real-world situations.
arXiv Detail & Related papers (2024-07-09T15:45:04Z) - Distributionally Robust Post-hoc Classifiers under Prior Shifts [31.237674771958165]
We investigate the problem of training models that are robust to shifts caused by changes in the distribution of class-priors or group-priors.
We present an extremely lightweight post-hoc approach that performs scaling adjustments to predictions from a pre-trained model.
arXiv Detail & Related papers (2023-09-16T00:54:57Z) - Building Resilience to Out-of-Distribution Visual Data via Input
Optimization and Model Finetuning [13.804184845195296]
We propose a preprocessing model that learns to optimise input data for a specific target vision model.
We investigate several out-of-distribution scenarios in the context of semantic segmentation for autonomous vehicles.
We demonstrate that our approach can enable performance on such data comparable to that of a finetuned model.
arXiv Detail & Related papers (2022-11-29T14:06:35Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
We propose self-distillation as a regularization for a further pre-training stage.
We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks.
arXiv Detail & Related papers (2022-09-30T02:25:12Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
arXiv Detail & Related papers (2021-11-24T06:18:32Z) - Few-shot learning with improved local representations via bias rectify
module [13.230636224045137]
We propose a Deep Bias Rectify Network (DBRN) to fully exploit the spatial information that exists in the structure of the feature representations.
bias rectify module is able to focus on the features that are more discriminative for classification by given different weights.
To make full use of the training data, we design a prototype augment mechanism that can make the prototypes generated from the support set to be more representative.
arXiv Detail & Related papers (2021-11-01T08:08:00Z) - Learning Neural Models for Natural Language Processing in the Face of
Distributional Shift [10.990447273771592]
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications.
It builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time.
This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information.
It is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime
arXiv Detail & Related papers (2021-09-03T14:29:20Z) - On Learning Text Style Transfer with Direct Rewards [101.97136885111037]
Lack of parallel corpora makes it impossible to directly train supervised models for the text style transfer task.
We leverage semantic similarity metrics originally used for fine-tuning neural machine translation models.
Our model provides significant gains in both automatic and human evaluation over strong baselines.
arXiv Detail & Related papers (2020-10-24T04:30:02Z) - Manifold attack [0.22419496088582863]
In this paper, we enforce the manifold preservation (manifold learning) from the original data into latent presentation.
We show that our approach of regularization provides improvements for the accuracy rate and for the robustness to adversarial examples.
arXiv Detail & Related papers (2020-09-13T09:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.