Effect of Fog Particle Size Distribution on 3D Object Detection Under Adverse Weather Conditions
- URL: http://arxiv.org/abs/2408.01085v1
- Date: Fri, 2 Aug 2024 08:06:12 GMT
- Title: Effect of Fog Particle Size Distribution on 3D Object Detection Under Adverse Weather Conditions
- Authors: Ajinkya Shinde, Gaurav Sharma, Manisha Pattanaik, Sri Niwas Singh,
- Abstract summary: The presence of fog in the atmosphere severely degrades the overall system's performance.
This manuscript analyzes the role of fog particle size distributions in 3D object detection under adverse weather conditions.
- Score: 3.9908045942106165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR-based sensors employing optical spectrum signals play a vital role in providing significant information about the target objects in autonomous driving vehicle systems. However, the presence of fog in the atmosphere severely degrades the overall system's performance. This manuscript analyzes the role of fog particle size distributions in 3D object detection under adverse weather conditions. We utilise Mie theory and meteorological optical range (MOR) to calculate the attenuation and backscattering coefficient values for point cloud generation and analyze the overall system's accuracy in Car, Cyclist, and Pedestrian case scenarios under easy, medium and hard detection difficulties. Gamma and Junge (Power-Law) distributions are employed to mathematically model the fog particle size distribution under strong and moderate advection fog environments. Subsequently, we modified the KITTI dataset based on the backscattering coefficient values and trained it on the PV-RCNN++ deep neural network model for Car, Cyclist, and Pedestrian cases under different detection difficulties. The result analysis shows a significant variation in the system's accuracy concerning the changes in target object dimensionality, the nature of the fog environment and increasing detection difficulties, with the Car exhibiting the highest accuracy of around 99% and the Pedestrian showing the lowest accuracy of around 73%.
Related papers
- An Atmospheric Correction Integrated LULC Segmentation Model for High-Resolution Satellite Imagery [0.0]
This study employs look-up-table-based radiative transfer simulations to estimate the atmospheric path reflectance and transmittance.
The corrected surface reflectance data were subsequently used in supervised and semi-supervised segmentation models.
arXiv Detail & Related papers (2024-09-09T10:47:39Z) - Fairness in Autonomous Driving: Towards Understanding Confounding Factors in Object Detection under Challenging Weather [7.736445799116692]
This study provides an empirical analysis of fairness in detecting pedestrians in a state-of-the-art transformer-based object detector.
In addition to classical metrics, we introduce novel probability-based metrics to measure various intricate properties of object detection.
Our quantitative analysis reveals how the previously overlooked yet intuitive factors, such as the distribution of demographic groups in the scene, the severity of weather, the pedestrians' proximity to the AV, among others, affect object detection performance.
arXiv Detail & Related papers (2024-05-31T22:35:10Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Ill-posed Surface Emissivity Retrieval from Multi-Geometry
HyperspectralImages using a Hybrid Deep Neural Network [0.0]
Atmospheric correction is a fundamental task in remote sensing because observations are taken either of the atmosphere or looking through it.
A geometry-dependent hybrid neural network is proposed for automatic atmospheric correction using multi-scan hyperspectral data.
Results show that the proposed network has the capacity to accurately characterize the atmosphere and estimate target emissivity spectra with a Mean Absolute Error (MAE) under 0.02 for 29 different materials.
arXiv Detail & Related papers (2021-07-09T18:59:58Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Leveraging Uncertainties for Deep Multi-modal Object Detection in
Autonomous Driving [12.310862288230075]
This work presents a probabilistic deep neural network that combines LiDAR point clouds and RGB camera images for robust, accurate 3D object detection.
We explicitly model uncertainties in the classification and regression tasks, and leverage uncertainties to train the fusion network via a sampling mechanism.
arXiv Detail & Related papers (2020-02-01T14:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.