IG-SLAM: Instant Gaussian SLAM
- URL: http://arxiv.org/abs/2408.01126v2
- Date: Wed, 7 Aug 2024 10:25:08 GMT
- Title: IG-SLAM: Instant Gaussian SLAM
- Authors: F. Aykut Sarikamis, A. Aydin Alatan,
- Abstract summary: 3D Gaussian Splatting has recently shown promising results as an alternative scene representation in SLAM systems.
We present IG-SLAM, a dense RGB-only SLAM system that employs robust Dense-SLAM methods for tracking and combines them with Gaussian Splatting.
We demonstrate competitive performance with state-of-the-art RGB-only SLAM systems while achieving faster operation speeds.
- Score: 6.228980850646457
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: 3D Gaussian Splatting has recently shown promising results as an alternative scene representation in SLAM systems to neural implicit representations. However, current methods either lack dense depth maps to supervise the mapping process or detailed training designs that consider the scale of the environment. To address these drawbacks, we present IG-SLAM, a dense RGB-only SLAM system that employs robust Dense-SLAM methods for tracking and combines them with Gaussian Splatting. A 3D map of the environment is constructed using accurate pose and dense depth provided by tracking. Additionally, we utilize depth uncertainty in map optimization to improve 3D reconstruction. Our decay strategy in map optimization enhances convergence and allows the system to run at 10 fps in a single process. We demonstrate competitive performance with state-of-the-art RGB-only SLAM systems while achieving faster operation speeds. We present our experiments on the Replica, TUM-RGBD, ScanNet, and EuRoC datasets. The system achieves photo-realistic 3D reconstruction in large-scale sequences, particularly in the EuRoC dataset.
Related papers
- Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splatting has emerged as a powerful representation of geometry and appearance for RGB-only dense Simultaneous SLAM.
We propose the first RGB-only SLAM system with a dense 3D Gaussian map representation.
Our experiments on the Replica, TUM-RGBD, and ScanNet datasets indicate the effectiveness of globally optimized 3D Gaussians.
arXiv Detail & Related papers (2024-05-26T12:26:54Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - RGBD GS-ICP SLAM [1.3108652488669732]
We propose a novel dense representation SLAM approach with a fusion of Generalized Iterative Closest Point (G-ICP) and 3D Gaussian Splatting (3DGS)
Experimental results demonstrate the effectiveness of our approach, showing an incredibly fast speed up to 107 FPS.
arXiv Detail & Related papers (2024-03-19T08:49:48Z) - Loopy-SLAM: Dense Neural SLAM with Loop Closures [53.11936461015725]
We introduce Loopy-SLAM that globally optimize poses and the dense 3D model.
We use frame-to-model tracking using a data-driven point-based submap generation method and trigger loop closures online by performing global place recognition.
Evaluation on the synthetic Replica and real-world TUM-RGBD and ScanNet datasets demonstrate competitive or superior performance in tracking, mapping, and rendering accuracy when compared to existing dense neural RGBD SLAM methods.
arXiv Detail & Related papers (2024-02-14T18:18:32Z) - SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM [48.190398577764284]
SplaTAM is an approach to enable high-fidelity reconstruction from a single unposed RGB-D camera.
It employs a simple online tracking and mapping system tailored to the underlying Gaussian representation.
Experiments show that SplaTAM achieves up to 2x superior performance in camera pose estimation, map construction, and novel-view synthesis over existing methods.
arXiv Detail & Related papers (2023-12-04T18:53:24Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM [111.83168930989503]
NICER-SLAM is a dense RGB SLAM system that simultaneously optimize for camera poses and a hierarchical neural implicit map representation.
We show strong performance in dense mapping, tracking, and novel view synthesis, even competitive with recent RGB-D SLAM systems.
arXiv Detail & Related papers (2023-02-07T17:06:34Z) - ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of
Signed Distance Fields [2.0625936401496237]
ESLAM reads RGB-D frames with unknown camera poses in a sequential manner and incrementally reconstructs the scene representation.
ESLAM improves the accuracy of 3D reconstruction and camera localization of state-of-the-art dense visual SLAM methods by more than 50%.
arXiv Detail & Related papers (2022-11-21T18:25:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.