A Survey of Mamba
- URL: http://arxiv.org/abs/2408.01129v4
- Date: Fri, 18 Oct 2024 10:46:43 GMT
- Title: A Survey of Mamba
- Authors: Haohao Qu, Liangbo Ning, Rui An, Wenqi Fan, Tyler Derr, Hui Liu, Xin Xu, Qing Li,
- Abstract summary: Recently, a novel architecture named Mamba has emerged as a promising alternative for building foundation models.
This study investigates the advancements of Mamba-based models, the techniques of adapting Mamba to diverse data, and the applications where Mamba can excel.
- Score: 27.939712558507516
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As one of the most representative DL techniques, Transformer architecture has empowered numerous advanced models, especially the large language models (LLMs) that comprise billions of parameters, becoming a cornerstone in deep learning. Despite the impressive achievements, Transformers still face inherent limitations, particularly the time-consuming inference resulting from the quadratic computation complexity of attention calculation. Recently, a novel architecture named Mamba, drawing inspiration from classical state space models (SSMs), has emerged as a promising alternative for building foundation models, delivering comparable modeling abilities to Transformers while preserving near-linear scalability concerning sequence length. This has sparked an increasing number of studies actively exploring Mamba's potential to achieve impressive performance across diverse domains. Given such rapid evolution, there is a critical need for a systematic review that consolidates existing Mamba-empowered models, offering a comprehensive understanding of this emerging model architecture. In this survey, we therefore conduct an in-depth investigation of recent Mamba-associated studies, covering three main aspects: the advancements of Mamba-based models, the techniques of adapting Mamba to diverse data, and the applications where Mamba can excel. Specifically, we first review the foundational knowledge of various representative deep learning models and the details of Mamba-1&2 as preliminaries. Then, to showcase the significance of Mamba for AI, we comprehensively review the related studies focusing on Mamba models' architecture design, data adaptability, and applications. Finally, we present a discussion of current limitations and explore various promising research directions to provide deeper insights for future investigations.
Related papers
- ReMamba: Equip Mamba with Effective Long-Sequence Modeling [50.530839868893786]
We propose ReMamba, which enhances Mamba's ability to comprehend long contexts.
ReMamba incorporates selective compression and adaptation techniques within a two-stage re-forward process.
arXiv Detail & Related papers (2024-08-28T02:47:27Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
We propose a novel hybrid Mamba-Transformer backbone, denoted as MambaVision, which is specifically tailored for vision applications.
Our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features.
We conduct a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba.
arXiv Detail & Related papers (2024-07-10T23:02:45Z) - Venturing into Uncharted Waters: The Navigation Compass from Transformer to Mamba [77.21394300708172]
Transformer, a deep neural network architecture, has long dominated the field of natural language processing and beyond.
The recent introduction of Mamba challenges its supremacy, sparks considerable interest among researchers, and gives rise to a series of Mamba-based models that have exhibited notable potential.
This survey paper orchestrates a comprehensive discussion, diving into essential research dimensions, covering: (i) the functioning of the Mamba mechanism and its foundation on the principles of structured state space models; (ii) the proposed improvements and the integration of Mamba with various networks, exploring its potential as a substitute for Transformers; (iii) the combination of
arXiv Detail & Related papers (2024-06-24T15:27:21Z) - MambaLRP: Explaining Selective State Space Sequence Models [18.133138020777295]
Recent sequence modeling approaches using selective state space sequence models, referred to as Mamba models, have seen a surge of interest.
These models allow efficient processing of long sequences in linear time and are rapidly being adopted in a wide range of applications such as language modeling.
To foster their reliable use in real-world scenarios, it is crucial to augment their transparency.
arXiv Detail & Related papers (2024-06-11T12:15:47Z) - Demystify Mamba in Vision: A Linear Attention Perspective [72.93213667713493]
Mamba is an effective state space model with linear computation complexity.
We show that Mamba shares surprising similarities with linear attention Transformer.
We propose a Mamba-Like Linear Attention (MLLA) model by incorporating the merits of these two key designs into linear attention.
arXiv Detail & Related papers (2024-05-26T15:31:09Z) - Vision Mamba: A Comprehensive Survey and Taxonomy [11.025533218561284]
State Space Model (SSM) is a mathematical model used to describe and analyze the behavior of dynamic systems.
Based on the latest state-space models, Mamba merges time-varying parameters into SSMs and formulates a hardware-aware algorithm for efficient training and inference.
Mamba is expected to become a new AI architecture that may outperform Transformer.
arXiv Detail & Related papers (2024-05-07T15:30:14Z) - CLIP-Mamba: CLIP Pretrained Mamba Models with OOD and Hessian Evaluation [18.383760896304604]
This report introduces the first attempt to train a Mamba model utilizing contrastive technical-image pretraining (CLIP)
A Mamba model 67 million parameters is on par with a 307 million- parameters Vision Transformer (ViT) model in zero-shot classification tasks.
arXiv Detail & Related papers (2024-04-30T09:40:07Z) - Visual Mamba: A Survey and New Outlooks [33.90213491829634]
Mamba, a recent selective structured state space model, excels in long sequence modeling.
Since January 2024, Mamba has been actively applied to diverse computer vision tasks.
This paper reviews visual Mamba approaches, analyzing over 200 papers.
arXiv Detail & Related papers (2024-04-29T16:51:30Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
This paper introduces a novel Mamba-based model, Swin-UMamba, designed specifically for medical image segmentation tasks.
Swin-UMamba demonstrates superior performance with a large margin compared to CNNs, ViTs, and latest Mamba-based models.
arXiv Detail & Related papers (2024-02-05T18:58:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.