MambaLRP: Explaining Selective State Space Sequence Models
- URL: http://arxiv.org/abs/2406.07592v2
- Date: Thu, 31 Oct 2024 00:01:20 GMT
- Title: MambaLRP: Explaining Selective State Space Sequence Models
- Authors: Farnoush Rezaei Jafari, Grégoire Montavon, Klaus-Robert Müller, Oliver Eberle,
- Abstract summary: Recent sequence modeling approaches using selective state space sequence models, referred to as Mamba models, have seen a surge of interest.
These models allow efficient processing of long sequences in linear time and are rapidly being adopted in a wide range of applications such as language modeling.
To foster their reliable use in real-world scenarios, it is crucial to augment their transparency.
- Score: 18.133138020777295
- License:
- Abstract: Recent sequence modeling approaches using selective state space sequence models, referred to as Mamba models, have seen a surge of interest. These models allow efficient processing of long sequences in linear time and are rapidly being adopted in a wide range of applications such as language modeling, demonstrating promising performance. To foster their reliable use in real-world scenarios, it is crucial to augment their transparency. Our work bridges this critical gap by bringing explainability, particularly Layer-wise Relevance Propagation (LRP), to the Mamba architecture. Guided by the axiom of relevance conservation, we identify specific components in the Mamba architecture, which cause unfaithful explanations. To remedy this issue, we propose MambaLRP, a novel algorithm within the LRP framework, which ensures a more stable and reliable relevance propagation through these components. Our proposed method is theoretically sound and excels in achieving state-of-the-art explanation performance across a diverse range of models and datasets. Moreover, MambaLRP facilitates a deeper inspection of Mamba architectures, uncovering various biases and evaluating their significance. It also enables the analysis of previous speculations regarding the long-range capabilities of Mamba models.
Related papers
- Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.
State Space Models (SSMs) have achieved notable success in computer vision.
We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - ReMamba: Equip Mamba with Effective Long-Sequence Modeling [50.530839868893786]
We propose ReMamba, which enhances Mamba's ability to comprehend long contexts.
ReMamba incorporates selective compression and adaptation techniques within a two-stage re-forward process.
arXiv Detail & Related papers (2024-08-28T02:47:27Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - A Survey of Mamba [27.939712558507516]
Recently, a novel architecture named Mamba has emerged as a promising alternative for building foundation models.
This study investigates the advancements of Mamba-based models, the techniques of adapting Mamba to diverse data, and the applications where Mamba can excel.
arXiv Detail & Related papers (2024-08-02T09:18:41Z) - Mamba-PTQ: Outlier Channels in Recurrent Large Language Models [49.1574468325115]
We show that Mamba models exhibit the same pattern of outlier channels observed in attention-based LLMs.
We show that the reason for the difficulty of quantizing SSMs is caused by activation outliers, similar to those observed in transformer-based LLMs.
arXiv Detail & Related papers (2024-07-17T08:21:06Z) - CMamba: Channel Correlation Enhanced State Space Models for Multivariate Time Series Forecasting [18.50360049235537]
Mamba, a state space model, has emerged with robust sequence and feature mixing capabilities.
Capturing cross-channel dependencies is critical in enhancing performance of time series prediction.
We introduce a refined Mamba variant tailored for time series forecasting.
arXiv Detail & Related papers (2024-06-08T01:32:44Z) - Mamba as Decision Maker: Exploring Multi-scale Sequence Modeling in Offline Reinforcement Learning [16.23977055134524]
We propose a novel action predictor sequence, named Mamba Decision Maker (MambaDM)
MambaDM is expected to be a promising alternative for sequence modeling paradigms, owing to its efficient modeling of multi-scale dependencies.
This paper delves into the sequence modeling capabilities of MambaDM in the RL domain, paving the way for future advancements.
arXiv Detail & Related papers (2024-06-04T06:49:18Z) - The Hidden Attention of Mamba Models [54.50526986788175]
The Mamba layer offers an efficient selective state space model (SSM) that is highly effective in modeling multiple domains.
We show that such models can be viewed as attention-driven models.
This new perspective enables us to empirically and theoretically compare the underlying mechanisms to that of the self-attention layers in transformers.
arXiv Detail & Related papers (2024-03-03T18:58:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.