論文の概要: PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network
- arxiv url: http://arxiv.org/abs/2408.01137v1
- Date: Fri, 2 Aug 2024 09:31:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 13:57:23.517367
- Title: PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network
- Title(参考訳): PGNeXt:ピラミッドグラフトネットワークによる高分解能塩性物体検出
- Authors: Changqun Xia, Chenxi Xie, Zhentao He, Tianshu Yu, Jia Li,
- Abstract要約: 本稿では、データセットとネットワークフレームワークの両方の観点から、より難解な高分解能サルエントオブジェクト検出(HRSOD)について述べる。
HRSODデータセットの欠如を補うため、UHRSDと呼ばれる大規模高解像度の高分解能物体検出データセットを慎重に収集した。
すべての画像はピクセルレベルで微妙にアノテートされ、以前の低解像度のSODデータセットをはるかに上回っている。
- 参考スコア(独自算出の注目度): 24.54269823691119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an advanced study on more challenging high-resolution salient object detection (HRSOD) from both dataset and network framework perspectives. To compensate for the lack of HRSOD dataset, we thoughtfully collect a large-scale high resolution salient object detection dataset, called UHRSD, containing 5,920 images from real-world complex scenarios at 4K-8K resolutions. All the images are finely annotated in pixel-level, far exceeding previous low-resolution SOD datasets. Aiming at overcoming the contradiction between the sampling depth and the receptive field size in the past methods, we propose a novel one-stage framework for HR-SOD task using pyramid grafting mechanism. In general, transformer-based and CNN-based backbones are adopted to extract features from different resolution images independently and then these features are grafted from transformer branch to CNN branch. An attention-based Cross-Model Grafting Module (CMGM) is proposed to enable CNN branch to combine broken detailed information more holistically, guided by different source feature during decoding process. Moreover, we design an Attention Guided Loss (AGL) to explicitly supervise the attention matrix generated by CMGM to help the network better interact with the attention from different branches. Comprehensive experiments on UHRSD and widely-used SOD datasets demonstrate that our method can simultaneously locate salient object and preserve rich details, outperforming state-of-the-art methods. To verify the generalization ability of the proposed framework, we apply it to the camouflaged object detection (COD) task. Notably, our method performs superior to most state-of-the-art COD methods without bells and whistles.
- Abstract(参考訳): 本稿では、データセットとネットワークフレームワークの両方の観点から、より難解な高分解能サルエントオブジェクト検出(HRSOD)について述べる。
HRSODデータセットの欠如を補うため、4K-8K解像度で現実の複雑なシナリオから5,920枚の画像を含む、UHRSDと呼ばれる大規模高解像度の高分解能物体検出データセットを慎重に収集した。
すべての画像はピクセルレベルで微妙にアノテートされ、以前の低解像度のSODデータセットをはるかに上回っている。
従来の手法では,サンプリング深度と受容場の大きさの矛盾を克服することを目的として,ピラミッドグラフト機構を用いたHR-SODタスクのための新しい一段階フレームワークを提案する。
一般に、変換器ベースとCNNベースのバックボーンを用いて、異なる解像度画像から特徴を独立に抽出し、これらの特徴を変換器ブランチからCNNブランチに移植する。
CNNブランチが、デコード処理中に異なるソース機能によってガイドされる、壊れた詳細情報をより公平に組み合わせられるように、アテンションベースのクロスモデルグラフティングモジュール(CMGM)が提案されている。
さらに,CMGMによるアテンション行列を明示的に監視し,ネットワークが異なるブランチからのアテンションとよりよく対話できるように,AGL(Atention Guided Loss)を設計する。
UHRSDと広く使用されているSODデータセットに関する総合的な実験により、我々の手法は、有能なオブジェクトを同時に検出し、リッチな詳細を保存し、最先端の手法より優れていることを示す。
提案するフレームワークの一般化能力を検証するために,COD(camouflaged object detection)タスクに適用する。
特に, ベルやホイッスルを使わずに, 最先端のCOD法よりも優れた性能を発揮する。
関連論文リスト
- Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
展開融合法は、ディープラーニングの強力な表現能力とモデルベースアプローチの堅牢性を統合する。
本稿では,衛星画像融合のためのモデルに基づく深部展開手法を提案する。
PRISMA、Quickbird、WorldView2データセットの実験結果から、本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-04T13:05:00Z) - Recurrent Multi-scale Transformer for High-Resolution Salient Object
Detection [68.65338791283298]
Salient Object Detection (SOD) は、画像やビデオの中で最も顕著なオブジェクトを識別し、セグメント化することを目的としている。
従来のSOD法は主に解像度の低い画像に限られており、高分解能SODの開発に適応することが困難である。
本研究ではまず,2K-8K解像度で10,500個の高品質なアノテート画像を含む新しいHRS10Kデータセットを提案する。
論文 参考訳(メタデータ) (2023-08-07T17:49:04Z) - Towards Model Generalization for Monocular 3D Object Detection [57.25828870799331]
我々は,Mono3Dオブジェクト検出に有効な統合カメラ一般化パラダイム(CGP)を提案する。
また,インスタンスレベルの拡張によりギャップを埋める2D-3D幾何一貫性オブジェクトスケーリング戦略(GCOS)を提案する。
DGMono3Dと呼ばれる手法は、評価された全てのデータセットに対して顕著な性能を達成し、SoTAの教師なしドメイン適応スキームを上回ります。
論文 参考訳(メタデータ) (2022-05-23T23:05:07Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Pyramid Grafting Network for One-Stage High Resolution Saliency
Detection [29.013012579688347]
我々は、異なる解像度画像から特徴を独立して抽出する、Praamid Grafting Network (PGNet) と呼ばれるワンステージフレームワークを提案する。
CNNブランチが壊れた詳細情報をよりホモロジーに組み合わせられるように、アテンションベースのクロスモデルグラフティングモジュール (CMGM) が提案されている。
我々は,4K-8K解像度で5,920個の画像を含む超高分解能塩度検出データセットUHRSDを新たに提供した。
論文 参考訳(メタデータ) (2022-04-11T12:22:21Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
誘導DSRのための新しい注意に基づく階層型マルチモーダル融合ネットワークを提案する。
本手法は,再現精度,動作速度,メモリ効率の点で最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:28:33Z) - Locality-Aware Rotated Ship Detection in High-Resolution Remote Sensing
Imagery Based on Multi-Scale Convolutional Network [7.984128966509492]
マルチスケール畳み込みニューラルネットワーク(CNN)に基づく局所性認識型回転船検出(LARSD)フレームワークを提案する。
提案フレームワークはUNetのようなマルチスケールCNNを用いて高解像度の情報を持つマルチスケール特徴マップを生成する。
検出データセットを拡大するために、新しい高解像度船舶検出(HRSD)データセットを構築し、2499の画像と9269のインスタンスを異なる解像度でGoogle Earthから収集した。
論文 参考訳(メタデータ) (2020-07-24T03:01:42Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。