Rethinking Pre-trained Feature Extractor Selection in Multiple Instance Learning for Whole Slide Image Classification
- URL: http://arxiv.org/abs/2408.01167v1
- Date: Fri, 2 Aug 2024 10:34:23 GMT
- Title: Rethinking Pre-trained Feature Extractor Selection in Multiple Instance Learning for Whole Slide Image Classification
- Authors: Bryan Wong, Mun Yong Yi,
- Abstract summary: Multiple instance learning (MIL) has become a preferred method for classifying gigapixel whole slide images (WSIs)
This study examines MIL feature extractors across three dimensions: pre-training dataset, backbone model, and pre-training method.
- Score: 2.6703221234079946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple instance learning (MIL) has become a preferred method for classifying gigapixel whole slide images (WSIs), without requiring patch label annotation. The focus of the current MIL research stream is on the embedding-based MIL approach, which involves extracting feature vectors from patches using a pre-trained feature extractor. These feature vectors are then fed into an MIL aggregator for slide-level prediction. Despite prior research suggestions on enhancing the most commonly used ResNet50 supervised model pre-trained on ImageNet-1K, there remains a lack of clear guidance on selecting the optimal feature extractor to maximize WSI performance. This study aims at addressing this gap by examining MIL feature extractors across three dimensions: pre-training dataset, backbone model, and pre-training method. Extensive experiments were carried out on the two public WSI datasets (TCGA-NSCLC and Camelyon16) using four SOTA MIL models. The main findings indicate the following: 1) Performance significantly improves with larger and more varied pre-training datasets in both CNN and Transformer backbones. 2) `Modern and deeper' backbones greatly outperform `standard' backbones (ResNet and ViT), with performance improvements more guaranteed in Transformer-based backbones. 3) The choice of self-supervised learning (SSL) method is crucial, with the most significant benefits observed when applied to the Transformer (ViT) backbone. The study findings have practical implications, including designing more effective pathological foundation models. Our code is available at: https://anonymous.4open.science/r/MIL-Feature-Extractor-Selection
Related papers
- MoE-FFD: Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection [54.545054873239295]
Deepfakes have recently raised significant trust issues and security concerns among the public.
ViT-based methods take advantage of the expressivity of transformers, achieving superior detection performance.
This work introduces Mixture-of-Experts modules for Face Forgery Detection (MoE-FFD), a generalized yet parameter-efficient ViT-based approach.
arXiv Detail & Related papers (2024-04-12T13:02:08Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - TPMIL: Trainable Prototype Enhanced Multiple Instance Learning for Whole
Slide Image Classification [13.195971707693365]
We develop a Trainable Prototype enhanced deep MIL framework for weakly supervised WSI classification.
Our method is able to reveal the correlations between different tumor subtypes through distances between corresponding trained prototypes.
We test our method on two WSI datasets and it achieves a new SOTA.
arXiv Detail & Related papers (2023-05-01T07:39:19Z) - Feature Re-calibration based MIL for Whole Slide Image Classification [7.92885032436243]
Whole slide image (WSI) classification is a fundamental task for the diagnosis and treatment of diseases.
We propose to re-calibrate the distribution of a WSI bag (instances) by using the statistics of the max-instance (critical) feature.
We employ a position encoding module (PEM) to model spatial/morphological information, and perform pooling by multi-head self-attention (PSMA) with a Transformer encoder.
arXiv Detail & Related papers (2022-06-22T07:00:39Z) - Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain,
Active and Continual Few-Shot Learning [41.07029317930986]
We propose a variance-sensitive class of models that operates in a low-label regime.
The first method, Simple CNAPS, employs a hierarchically regularized Mahalanobis-distance based classifier.
We further extend this approach to a transductive learning setting, proposing Transductive CNAPS.
arXiv Detail & Related papers (2022-01-13T18:59:02Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
Transformer-based supervised pre-training achieves great performance in person re-identification (ReID)
Due to the domain gap between ImageNet and ReID datasets, it usually needs a larger pre-training dataset to boost the performance.
This work aims to mitigate the gap between the pre-training and ReID datasets from the perspective of data and model structure.
arXiv Detail & Related papers (2021-11-23T18:59:08Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection.
In this paper, we first study how biases in the dataset affect existing methods.
We show that current contrastive approaches work surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets.
arXiv Detail & Related papers (2021-06-10T17:59:13Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Dual-stream Multiple Instance Learning Network for Whole Slide Image
Classification with Self-supervised Contrastive Learning [16.84711797934138]
We address the challenging problem of whole slide image (WSI) classification.
WSI classification can be cast as a multiple instance learning (MIL) problem when only slide-level labels are available.
We propose a MIL-based method for WSI classification and tumor detection that does not require localized annotations.
arXiv Detail & Related papers (2020-11-17T20:51:15Z) - Dual-stream Maximum Self-attention Multi-instance Learning [11.685285490589981]
Multi-instance learning (MIL) is a form of weakly supervised learning where a single class label is assigned to a bag of instances while the instance-level labels are not available.
We propose a dual-stream maximum self-attention MIL model (DSMIL) parameterized by neural networks.
Our method achieves superior performance compared to the best MIL methods and demonstrates state-of-the-art performance on benchmark MIL datasets.
arXiv Detail & Related papers (2020-06-09T22:44:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.