論文の概要: WaveMamba: Spatial-Spectral Wavelet Mamba for Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2408.01231v2
- Date: Fri, 22 Nov 2024 12:04:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 18:36:11.285041
- Title: WaveMamba: Spatial-Spectral Wavelet Mamba for Hyperspectral Image Classification
- Title(参考訳): WaveMamba:ハイパースペクトル画像分類のための空間スペクトルウェーブレットマンバ
- Authors: Muhammad Ahmad, Muhammad Usama, Manuel Mazzara, Salvatore Distefano,
- Abstract要約: 本稿では、ウェーブレット変換を空間スペクトルマンバアーキテクチャと統合し、HSI分類を強化する新しいアプローチであるWaveMambaを紹介する。
WaveMambaは既存のモデルを超え、ヒューストン大学のデータセットでは4.5%、パヴィア大学のデータセットでは2.0%の精度向上を実現している。
- 参考スコア(独自算出の注目度): 3.5302264121619094
- License:
- Abstract: Hyperspectral Imaging (HSI) has proven to be a powerful tool for capturing detailed spectral and spatial information across diverse applications. Despite the advancements in Deep Learning (DL) and Transformer architectures for HSI classification, challenges such as computational efficiency and the need for extensive labeled data persist. This paper introduces WaveMamba, a novel approach that integrates wavelet transformation with the spatial-spectral Mamba architecture to enhance HSI classification. WaveMamba captures both local texture patterns and global contextual relationships in an end-to-end trainable model. The Wavelet-based enhanced features are then processed through the state-space architecture to model spatial-spectral relationships and temporal dependencies. The experimental results indicate that WaveMamba surpasses existing models, achieving an accuracy improvement of 4.5\% on the University of Houston dataset and a 2.0\% increase on the Pavia University dataset.
- Abstract(参考訳): ハイパースペクトルイメージング(HSI)は、様々なアプリケーションにわたる詳細なスペクトルと空間情報をキャプチャするための強力なツールであることが証明されている。
HSI分類のためのディープラーニング(DL)とトランスフォーマーアーキテクチャの進歩にもかかわらず、計算効率や広範なラベル付きデータの必要性といった課題が続いている。
本稿では、ウェーブレット変換を空間スペクトルマンバアーキテクチャと統合し、HSI分類を強化する新しいアプローチであるWaveMambaを紹介する。
WaveMambaは、エンドツーエンドのトレーニング可能なモデルで、ローカルなテクスチャパターンとグローバルなコンテキスト関係の両方をキャプチャします。
Waveletベースの拡張機能はステートスペースアーキテクチャを通じて処理され、空間-スペクトル関係と時間的依存関係をモデル化する。
実験の結果、WaveMambaは既存のモデルを超え、ヒューストン大学のデータセットでは4.5倍の精度向上、パヴィア大学のデータセットでは2.0倍の精度向上を達成した。
関連論文リスト
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
従来の軽量モデルの研究は、主にCNNとTransformerベースの設計に重点を置いてきた。
効率と性能のバランスをとるMobileMambaフレームワークを提案する。
MobileMambaはTop-1で83.6%を達成し、既存の最先端の手法を上回っている。
論文 参考訳(メタデータ) (2024-11-24T18:01:05Z) - DiMSUM: Diffusion Mamba -- A Scalable and Unified Spatial-Frequency Method for Image Generation [4.391439322050918]
拡散モデルのための新しい状態空間アーキテクチャを提案する。
入力画像の局所的特徴に対する帰納バイアスを高めるために,空間情報と周波数情報を利用する。
論文 参考訳(メタデータ) (2024-11-06T18:59:17Z) - Spatial-Mamba: Effective Visual State Space Models via Structure-Aware State Fusion [46.82975707531064]
SSM(Selective State Space Model)は、1Dシーケンシャルデータにおける長距離依存関係のキャプチャに優れる。
本研究では,地域間直接接続を実現する新しいアプローチであるSpatial-Mambaを提案する。
画像分類,検出,セグメンテーションにおいて,空間マンバは,単一のスキャンであっても,最先端のSSMベースのモデルを達成したり,超えたりしていることを示す。
論文 参考訳(メタデータ) (2024-10-19T12:56:58Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
本研究では,マンバをベースとした純フレームワーク(MambaVT)を提案する。
具体的には、長距離クロスフレーム統合コンポーネントを考案し、ターゲットの外観変化にグローバルに適応する。
実験では、RGB-TトラッキングのためのMambaのビジョンの可能性が示され、MambaVTは4つの主要なベンチマークで最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-08-15T02:29:00Z) - Spatial-Spectral Morphological Mamba for Hyperspectral Image Classification [27.04370747400184]
本稿では,まずハイパースペクトル画像パッチを空間スペクトルトークンに変換するトークン生成モジュールである空間スペクトル形態マンバ(MorpMamba)モデルを提案する。
これらのトークンはモルフォロジー演算によって処理され、奥行き分離可能な畳み込み演算を用いて構造情報と形状情報を計算する。
広く使われているHSIデータセットの実験では、MorpMambaモデルはCNNモデルとTransformerモデルの両方で(パラメトリック効率)優れていた。
論文 参考訳(メタデータ) (2024-08-02T16:28:51Z) - Multi-head Spatial-Spectral Mamba for Hyperspectral Image Classification [3.105394345970172]
空間スペクトルマンバ(SSM)は計算効率を改善し、長距離依存関係をキャプチャする。
マルチヘッド・セルフアテンション・トークンエンハンスメント(MHSSMamba)を用いたSSMを提案する。
MHSSMambaはパヴィア大学で97.62%、ヒューストン大学で96.92%、サリナスで96.85%、武漢・長九のデータセットで99.49%という顕著な分類精度を達成した。
論文 参考訳(メタデータ) (2024-08-02T12:27:15Z) - Empowering Snapshot Compressive Imaging: Spatial-Spectral State Space Model with Across-Scanning and Local Enhancement [51.557804095896174]
AsLE-SSMという,グローバルな局所的バランスの取れたコンテキストエンコーディングとチャネル間相互作用の促進に空間スペクトルSSMを用いる状態空間モデルを導入する。
実験の結果,ASLE-SSMは既存の最先端手法よりも優れており,推定速度はTransformerベースのMSTより2.4倍速く,パラメータの0.12(M)を節約できることがわかった。
論文 参考訳(メタデータ) (2024-08-01T15:14:10Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
3つのSARデータセットによる実験結果から、我々のWBANetは現代最先端の手法を著しく上回っていることが明らかとなった。
我々のWBANetは、それぞれのデータセットで98.33%、96.65%、96.62%の正確な分類(PCC)を達成している。
論文 参考訳(メタデータ) (2024-07-18T04:36:10Z) - GraphMamba: An Efficient Graph Structure Learning Vision Mamba for Hyperspectral Image Classification [19.740333867168108]
GraphMambaは、深部空間スペクトル情報マイニングを実現するための効率的なグラフ構造学習ビジョンMamba分類フレームワークである。
GraphMambaのコアコンポーネントには、計算効率を改善するHyperMambaモジュールと、適応的な空間コンテキスト認識のためのSpectralGCNモジュールが含まれている。
論文 参考訳(メタデータ) (2024-07-11T07:56:08Z) - HSIMamba: Hyperpsectral Imaging Efficient Feature Learning with Bidirectional State Space for Classification [16.742768644585684]
HSIMambaは、双方向の逆畳み込みニューラルネットワークパスを使用して、スペクトル特徴をより効率的に抽出する新しいフレームワークである。
提案手法は,CNNの動作効率と,トランスフォーマに見られる注意機構の動的特徴抽出機能を組み合わせたものである。
このアプローチは、現在のベンチマークを超えて分類精度を改善し、トランスフォーマーのような高度なモデルで遭遇する計算の非効率性に対処する。
論文 参考訳(メタデータ) (2024-03-30T07:27:36Z) - Point Cloud Mamba: Point Cloud Learning via State Space Model [73.7454734756626]
我々は,マンバをベースとしたポイントクラウド法が,トランスフォーマや多層パーセプトロン(MLP)に基づく従来手法よりも優れていることを示す。
特に,マルチ層パーセプトロン(MLP)を用いて,マンバをベースとした点雲法が従来手法より優れていることを示す。
Point Cloud Mambaは、最先端(SOTA)のポイントベースメソッドであるPointNeXtを超え、ScanNN、ModelNet40、ShapeNetPart、S3DISデータセット上での新たなSOTAパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-03-01T18:59:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。