論文の概要: RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework
- arxiv url: http://arxiv.org/abs/2408.01262v1
- Date: Fri, 2 Aug 2024 13:35:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 13:27:42.049314
- Title: RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework
- Title(参考訳): RAGEval:シナリオ固有のRAG評価データセット生成フレームワーク
- Authors: Kunlun Zhu, Yifan Luo, Dingling Xu, Ruobing Wang, Shi Yu, Shuo Wang, Yukun Yan, Zhenghao Liu, Xu Han, Zhiyuan Liu, Maosong Sun,
- Abstract要約: 既存のRAGベンチマークは主に、大言語モデルが一般的な知識に正しく答えられるかどうかを評価することに焦点を当てている。
本稿では,評価データセットを自動生成するフレームワークであるRAGEvalを紹介する。
LLMが生み出す応答を慎重に評価するために, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
- 参考スコア(独自算出の注目度): 69.4501863547618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) systems have demonstrated their advantages in alleviating the hallucination of Large Language Models (LLMs). Existing RAG benchmarks mainly focus on evaluating whether LLMs can correctly answer the general knowledge. However, they are unable to evaluate the effectiveness of the RAG system in dealing with the data from different vertical domains. This paper introduces RAGEval, a framework for automatically generating evaluation datasets to evaluate the knowledge usage ability of different LLMs in different scenarios. Specifically, RAGEval summarizes a schema from seed documents, applies the configurations to generate diverse documents, and constructs question-answering pairs according to both articles and configurations. We propose three novel metrics, Completeness, Hallucination, and Irrelevance, to carefully evaluate the responses generated by LLMs. By benchmarking RAG models in vertical domains, RAGEval has the ability to better evaluate the knowledge usage ability of LLMs, which avoids the confusion regarding the source of knowledge in answering question in existing QA datasets--whether it comes from parameterized memory or retrieval.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) システムは,Large Language Models (LLM) の幻覚を緩和する上で,その利点を実証している。
既存のRAGベンチマークは主に、LLMが一般的な知識に正しく答えられるかどうかを評価することに焦点を当てている。
しかし、異なる垂直領域のデータを扱う場合、RAGシステムの有効性は評価できない。
本稿では,異なるシナリオにおける異なるLLMの知識利用能力を評価するために,評価データセットを自動生成するフレームワークであるRAGEvalを紹介する。
具体的には、RAGEvalはシードドキュメントからスキーマを要約し、さまざまなドキュメントを生成するために構成を適用し、記事と構成の両方に応じて質問応答ペアを構築する。
LLMが生み出す応答を慎重に評価するために, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
RAGEvalは、垂直領域のRAGモデルをベンチマークすることで、LCMの知識使用能力をよりよく評価する能力を持ち、既存のQAデータセットにおける知識の源泉に関する混乱を避ける。
関連論文リスト
- CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity [23.48167670445722]
Retrieval-Augmented Generation (RAG) は、外部知識ソースから取得したコンテキストの助けを借りて、より正確で信頼性の高い回答を生成することを目的としている。
これらのシステムの評価は, 以下の問題により, 依然として重要な研究領域である。
RAGパイプライン全体にわたって徹底的な評価を容易にするために,包括的全チェーン評価(CoFE-RAG)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T05:20:32Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation [61.14660526363607]
本稿では,検索モジュールと生成モジュールの両方に対して,一連の診断指標を組み込んだ詳細な評価フレームワークであるRAGCheckerを提案する。
RAGCheckerは、他の評価指標よりも、人間の判断との相関が著しく優れている。
RAGCheckerのメトリクスは、より効果的なRAGシステムの開発において研究者や実践者を導くことができる。
論文 参考訳(メタデータ) (2024-08-15T10:20:54Z) - RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems [0.0]
Retrieval-Augmented Generation (RAG)は、ユーザ向けチャットアプリケーションにおけるドメイン固有の知識の標準的なアーキテクチャパターンとなっている。
RAGBenchは、100kのサンプルからなる、最初の包括的な大規模RAGベンチマークデータセットである。
TRACe評価フレームワークは、すべてのRAGドメインに適用可能な説明可能かつ実行可能なRAG評価指標のセットである。
論文 参考訳(メタデータ) (2024-06-25T20:23:15Z) - Evaluation of Retrieval-Augmented Generation: A Survey [13.633909177683462]
本稿では,Retrieval-Augmented Generation (RAG)システムの評価とベンチマークについて概観する。
具体的には、検索・生成要素の定量化指標(関連性、正確性、忠実性など)について検討・比較する。
次に、様々なデータセットとメトリクスを分析し、現在のベンチマークの限界について議論し、RAGベンチマークの分野を前進させる潜在的な方向性を提案する。
論文 参考訳(メタデータ) (2024-05-13T02:33:25Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z) - RAGAS: Automated Evaluation of Retrieval Augmented Generation [25.402461447140823]
RAGAはRetrieval Augmented Generationパイプラインを評価するためのフレームワークである。
RAGシステムは、検索とLLMベースの生成モジュールで構成される。
論文 参考訳(メタデータ) (2023-09-26T19:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。