論文の概要: RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework
- arxiv url: http://arxiv.org/abs/2408.01262v4
- Date: Thu, 17 Oct 2024 02:20:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 13:18:17.190328
- Title: RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework
- Title(参考訳): RAGEval:シナリオ固有のRAG評価データセット生成フレームワーク
- Authors: Kunlun Zhu, Yifan Luo, Dingling Xu, Ruobing Wang, Shi Yu, Shuo Wang, Yukun Yan, Zhenghao Liu, Xu Han, Zhiyuan Liu, Maosong Sun,
- Abstract要約: 本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
- 参考スコア(独自算出の注目度): 69.4501863547618
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) is a powerful approach that enables large language models (LLMs) to incorporate external knowledge. However, evaluating the effectiveness of RAG systems in specialized scenarios remains challenging due to the high costs of data construction and the lack of suitable evaluation metrics. This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios by generating high-quality documents, questions, answers, and references through a schema-based pipeline. With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance to rigorously evaluate LLM-generated responses. Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples. Furthermore, the use of LLMs for scoring the proposed metrics demonstrates a high level of consistency with human evaluations. RAGEval establishes a new paradigm for evaluating RAG systems in real-world applications.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、大規模言語モデル(LLM)が外部知識を組み込むことを可能にする強力なアプローチである。
しかし、データ構築のコストが高く、適切な評価基準が欠如しているため、特定シナリオにおけるRAGシステムの有効性を評価することは依然として困難である。
本稿では、高品質な文書、質問、回答、参照をスキーマベースのパイプラインを通じて生成することにより、様々なシナリオでRAGシステムを評価するためのフレームワークであるRAGEvalを紹介する。
実測精度に着目して,LLM生成応答を厳密に評価するために,完全性,幻覚,不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
さらに,提案手法の評価にLLMを用いることで,人間の評価と高い整合性を示す。
RAGEvalは、現実世界のアプリケーションでRAGシステムを評価するための新しいパラダイムを確立している。
関連論文リスト
- OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain [62.89809156574998]
金融分野において全方向自動RAGベンチマークであるOmniEvalを導入する。
我々のベンチマークは多次元評価フレームワークによって特徴づけられる。
実験では、広範囲なテストデータセットを含むOmniEvalの包括性を実証した。
論文 参考訳(メタデータ) (2024-12-17T15:38:42Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity [23.48167670445722]
Retrieval-Augmented Generation (RAG) は、外部知識ソースから取得したコンテキストの助けを借りて、より正確で信頼性の高い回答を生成することを目的としている。
これらのシステムの評価は, 以下の問題により, 依然として重要な研究領域である。
RAGパイプライン全体にわたって徹底的な評価を容易にするために,包括的全チェーン評価(CoFE-RAG)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T05:20:32Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
我々は、RAGモデルの予測が誤りであり、現実のアプリケーションにおいて制御不能なリスクをもたらす可能性がどの程度あるかに焦点を当てる。
本研究は,RAGの予測に影響を及ぼす2つの重要な潜伏要因を明らかにする。
我々は,これらの要因をモデルに誘導し,その応答に与える影響を解析する,反実的プロンプトフレームワークを開発した。
論文 参考訳(メタデータ) (2024-09-24T14:52:14Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - Evaluation of Retrieval-Augmented Generation: A Survey [13.633909177683462]
本稿では,Retrieval-Augmented Generation (RAG)システムの評価とベンチマークについて概観する。
具体的には、検索・生成要素の定量化指標(関連性、正確性、忠実性など)について検討・比較する。
次に、様々なデータセットとメトリクスを分析し、現在のベンチマークの限界について議論し、RAGベンチマークの分野を前進させる潜在的な方向性を提案する。
論文 参考訳(メタデータ) (2024-05-13T02:33:25Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z) - RAGAS: Automated Evaluation of Retrieval Augmented Generation [25.402461447140823]
RAGAはRetrieval Augmented Generationパイプラインを評価するためのフレームワークである。
RAGシステムは、検索とLLMベースの生成モジュールで構成される。
論文 参考訳(メタデータ) (2023-09-26T19:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。