RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework
- URL: http://arxiv.org/abs/2408.01262v5
- Date: Mon, 03 Mar 2025 22:45:57 GMT
- Title: RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework
- Authors: Kunlun Zhu, Yifan Luo, Dingling Xu, Yukun Yan, Zhenghao Liu, Shi Yu, Ruobing Wang, Shuo Wang, Yishan Li, Nan Zhang, Xu Han, Zhiyuan Liu, Maosong Sun,
- Abstract summary: This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.<n>With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.<n> Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
- Score: 66.93260816493553
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) is a powerful approach that enables large language models (LLMs) to incorporate external knowledge. However, evaluating the effectiveness of RAG systems in specialized scenarios remains challenging due to the high costs of data construction and the lack of suitable evaluation metrics. This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios by generating high-quality documents, questions, answers, and references through a schema-based pipeline. With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance to evaluate LLM generated responses rigorously. Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples. Furthermore, the use of LLMs for scoring the proposed metrics demonstrates a high level of consistency with human evaluations. RAGEval establishes a new paradigm for evaluating RAG systems in real-world applications. The code and dataset are released at https://github.com/OpenBMB/RAGEval.
Related papers
- MIRAGE: A Metric-Intensive Benchmark for Retrieval-Augmented Generation Evaluation [8.950307082012763]
Retrieval-Augmented Generation (RAG) has gained prominence as an effective method for enhancing the generative capabilities of Large Language Models (LLMs)
We present MIRAGE, a Question Answering dataset specifically designed for RAG evaluation.
MIRAGE consists of 7,560 curated instances mapped to a retrieval pool of 37,800 entries, enabling an efficient and precise evaluation of both retrieval and generation tasks.
arXiv Detail & Related papers (2025-04-23T23:05:46Z) - Retrieval Augmented Generation Evaluation in the Era of Large Language Models: A Comprehensive Survey [29.186229489968564]
Retrieval-Augmented Generation (RAG) has revolutionized natural language processing by integrating Large Language Models (LLMs) with external information retrieval.
evaluating RAG systems presents unique challenges due to their hybrid architecture that combines retrieval and generation components.
arXiv Detail & Related papers (2025-04-21T06:39:47Z) - OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain [62.89809156574998]
We introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain.
Our benchmark is characterized by its multi-dimensional evaluation framework.
Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets.
arXiv Detail & Related papers (2024-12-17T15:38:42Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity [23.48167670445722]
Retrieval-Augmented Generation (RAG) aims to generate more accurate and reliable answers with the help of the retrieved context from external knowledge sources.
evaluating these systems remains a crucial research area due to the following issues.
We propose a Comprehensive Full-chain Evaluation (CoFE-RAG) framework to facilitate thorough evaluation across the entire RAG pipeline.
arXiv Detail & Related papers (2024-10-16T05:20:32Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
We focus on how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications.
Our research identifies two critical latent factors affecting RAG's confidence in its predictions.
We develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers.
arXiv Detail & Related papers (2024-09-24T14:52:14Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation [61.14660526363607]
We propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules.
RAGChecker has significantly better correlations with human judgments than other evaluation metrics.
The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.
arXiv Detail & Related papers (2024-08-15T10:20:54Z) - RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems [0.0]
Retrieval-Augmented Generation (RAG) has become a standard architectural pattern for domain-specific knowledge into user-facing chat applications.
We introduce RAGBench: the first comprehensive, large-scale RAG benchmark dataset of 100k examples.
We formalize the TRACe evaluation framework: a set of explainable and actionable RAG evaluation metrics applicable across all RAG domains.
arXiv Detail & Related papers (2024-06-25T20:23:15Z) - Evaluation of Retrieval-Augmented Generation: A Survey [13.633909177683462]
We provide a comprehensive overview of the evaluation and benchmarks of Retrieval-Augmented Generation (RAG) systems.
Specifically, we examine and compare several quantifiable metrics of the Retrieval and Generation components, such as relevance, accuracy, and faithfulness.
We then analyze the various datasets and metrics, discuss the limitations of current benchmarks, and suggest potential directions to advance the field of RAG benchmarks.
arXiv Detail & Related papers (2024-05-13T02:33:25Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - RAGAS: Automated Evaluation of Retrieval Augmented Generation [25.402461447140823]
RAGAs is a framework for evaluation of Retrieval Augmented Generation pipelines.
RAG systems are composed of a retrieval and an LLM based generation module.
arXiv Detail & Related papers (2023-09-26T19:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.